Biosintesis Nanopartikel Hidroksiapatit Termodifikasi Ekstrak Daun Gedi (Abelmoschus manihot L) sebagai Agen Antibakteri

Authors

  • Yuanita Amalia Hariyanto Universitas Sam Ratulangi
  • Meilani Jayanti Universitas Sam Ratulangi
  • Asari Universitas Sam Ratulangi

DOI:

https://doi.org/10.28926/briliant.v10i1.2341

Keywords:

Biosynthesis, nHA, Abelmoschus manihot L, antibacterial

Abstract

A tuna bones, particularly in the jaw region, constitute a category of food waste prevalent in North Sulawesi. Hydroxyapatite can be produced from tuna jaws. Abelmoschus manihot L (gedi) can improve the efficacy of hydroxyapatite as an antibacterial agent owing to its bioactive components. This study aimed to assess the antibacterial efficacy of hydroxyapatite treated with Abelmoschus manihot L extract. The samples were produced through multiple stages: preparation of tuna fish bones, synthesis of hydroxyapatite nanoparticles (nHA), extraction of gedi leaves and biosynthesis of nHA from gedi leaf extract. Biosynthesis was conducted via the co-precipitation technique with diverse compositions. The samples were then analyzed using FTIR and TEM, and their antibacterial activity was assessed using the well diffusion method. According to the results of the FTIR study, functional groups from the gedi leaf extract were detected at wave numbers 1731 cm-1, 1234 cm-1, and 896 cm-1, and nHA was discovered at wave numbers 576 cm-1, 608 cm-1, 964 cm-1, and 1041 cm-1, indicating the phosphate group. Furthermore, the results of the TEM investigation revealed that the samples formed spheres smaller than 100 nm. The antibacterial activity of gedi extract/nHA at concentrations of 0.5%, 1%, and 1.5% revealed the presence of inhibitory zones in the strong and very strong categories for S. aureus bacteria. Meanwhile, E. coli bacteria's inhibitory zones were moderate to strong. This suggests that gedi/nHA extract possesses antibacterial properties, making it ideal for use in biomedical applications.

References

Alinavaz, S., Mahdavinia, G. R., Jafari, H., Hazrati, M., & Akbari, A. (2021). Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity. Journal of Molecular Structure, 1225, 129095. https://doi.org/10.1016/j.molstruc.2020.129095

Basak, P., Pahari, P., Das, P., Das, N., Samanta, S. K., & Roy, S. (2018). Synthesis and Characterisation of Gelatin-PVA/Hydroxyapetite(HAP) Composite for Medical Applications. IOP Conference Series: Materials Science and Engineering, 410, 012021. https://doi.org/10.1088/1757-899X/410/1/012021

Chadijah, S. (2018). ANALISIS HIDROKSIAPATIT DARI TULANG IKAN TUNA (THUNNUS ALBACORES) DENGAN XRF, FTIR, dan XRD. Al-Kimia, 6(2). https://doi.org/10.24252/al-kimia.v6i2.5067

Daris, U. S., Syam, H., & Sukainah, A. (2023). Uji Daya Hambat serta Penentuan Minimum Inhibitor Concentration (MIC) Dan Minimum Bactericidal Concentration (MBC) Ekstrak Daun Bidara Terhadap Bakteri Patogen. Jurnal Pendidikan Teknologi Pertanian, 9(2), 223–234. https://doi.org/10.26858/jptp.v9i2.682

Foroughi, F., Hassanzadeh-Tabrizi, S. A., & Bigham, A. (2016). In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Materials Science and Engineering: C, 68, 774–779.

Głąb, M., Kudłacik-Kramarczyk, S., Drabczyk, A., Walter, J., Kordyka, A., Godzierz, M., Bogucki, R., Tyliszczak, B., & Sobczak-Kupiec, A. (2021). Hydroxyapatite Obtained via the Wet Precipitation Method and PVP/PVA Matrix as Components of Polymer-Ceramic Composites for Biomedical Applications. Molecules, 26(14), 4268. https://doi.org/10.3390/molecules26144268

Hariyanto, Y. A., Taufiq, A., Sunaryono, Mufti, N., Soontaranon, S., & Kamonsutthipaijit, N. (2019). Study on Structural Characters of Nano-sized Hydroxyapatite Prepared from Limestone. IOP Conference Series: Materials Science and Engineering, 515(1), 012020. https://doi.org/10.1088/1757-899X/515/1/012020

Hariyanto, Y. A., Taufiq, A., Sunaryono, & Soontaranon, S. (2019). Investigation on the Three-Dimensional Nanostructure and the Optical Properties of Hydroxyapatite/Magnetite Nanocomposites Prepared from Natural Resources. Journal of the Korean Physical Society, 75(9), 708–715. https://doi.org/10.3938/jkps.75.708

Hendrawati, T. Y., Nuraini, A., Hakim, R. J., & Fithriyah, N. H. (2020). Characterization and Properties of Gedi (Abelmoschus Manihot L.) Leaf Extract with Liquid Chromatography Mass Spectrometry Using Quadrupole Time-of-Flight Technology (LCMS-QToF). Food Science and Technology, 8(4), 79–86. https://doi.org/10.13189/fst.2020.080402

Ibrahim, M. (2023, Oktober 30). Food Waste RI Terbesar ke-2 Dunia, Bos Great Giant Foods Ungkap Penyebabnya. Infobanknews. https://infobanknews.com/food-waste-ri-terbesar-ke-2-dunia-bos-great-giant-foods-ungkap-penyebabnya/

Kalaiselvi, V., Mathammal, R., Vijayakumar, S., & Vaseeharan, B. (2018). Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. International Journal of Veterinary Science and Medicine, 6(2), 286–295. https://doi.org/10.1016/j.ijvsm.2018.08.003

Kambey, B., Sudewi, S., & Jayanto, I. (2019). ANALISIS KORELASI ANTARA KANDUNGAN FENOL TOTAL DENGAN AKTIVITAS ANTIBAKTERI EKSTRAK DAN FRAKSI Abelmoschus manihot L. TERHADAP Escherichia coli. PHARMACON, 8(2), 472. https://doi.org/10.35799/pha.8.2019.29315

Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S. M., Amiri, M., & Salavati-Niasari, M. (2020). Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. Journal of Hazardous Materials, 400, 123140. https://doi.org/10.1016/j.jhazmat.2020.123140

Teli, M. D., & Jadhav, AkshayC. (2016). Extraction and Characterization of Novel Lignocellulosic Fibre. Journal of Bionanoscience, 10(5), 418–423. https://doi.org/10.1166/jbns.2016.1392

Zhang, J., Liu, W., Schnitzler, V., Tancret, F., & Bouler, J.-M. (2014). Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 10(3), 1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001

Zheng, F., Wang, C., Huang, K., & Li, J. (2021). Surface Adsorption in PEG/Hydroxyapatite and PEG/Dickite Composite Phase Change Materials. Energy & Fuels, 35(13), 10850–10859. https://doi.org/10.1021/acs.energyfuels.1c00885

Published

2025-02-28

Issue

Section

Mathematics and Natural Science