Rancang Bangun Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Estimasi State-of-Charge (SOC) Baterai
DOI:
https://doi.org/10.28926/briliant.v10i1.2148Abstract
The growing demand for energy around the world is driving the development of renewable resources, and batteries are the primary choice for energy storage. To carry out effective energy management, State of Charge (SOC) estimation of Lithium-ion batteries is essential. The development of an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for SOC estimation using LG 18650 HG2 battery dataset is the objective of this research. It is tested with two parameters, namely two inputs consisting of voltage and current; and three inputs consisting of voltage, current, and temperature. The shape of the membership function, number of nodes, and epochs are some of the indicators tested to find the best configuration. The results show that the three-input configuration with generalized-bell membership function (Gbell MF), five nodes, and 100 epochs has the smallest Root Mean Square Error (RMSE), which is 0.0317, compared to the best two-input configuration, which has an RMSE of 0.0527. Since the three-input configuration takes longer to train, further improvements are needed for real-time implementations such as in electric vehicle battery management systems.
References
Aisyah, Habibi, M. N., Prasetyo, M. I. D., Windarko, N. A., & Yanaratri, D. S. (2020). Estimasi State of Charge (SOC) Pada Baterai Lithium – Ion Menggunakan Feed-Forward Backpropagation Neural Network Dua Tingkat. JTT (Jurnal Teknologi Terpadu), 8(2), 82–91.
Astuti, D. P. P., & Mashuri. (2020). Penerapan Metode Fuzzy Tsukamoto dan Fuzzy Sugeno Dalam Penentuan Harga Jual Sepeda Motor. UNNES Journal of Mathematics, 1(2252), 75–84.
Bakar, M. A. A., Ghani, A. T. A., Abdullah, M. L., Ismail, N., & Aziz, S. A. (2022). Adaptive Neuro-Fuzzy Inference System (ANFIS) Formulation to Predict Students’ Neuroscience Mechanistic: A Concept of an Intelligent Model to Enhance Mathematics Learning Ability. TEM Journal, 11(4), 1942–1951. https://doi.org/10.18421/TEM114-63
Boyle, J., Littler, T. B., & Foley, A. (2020). Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms. Renewable Energy, 160, 1119–1135. https://doi.org/10.1016/j.renene.2020.06.025
Chandrasekhar, T., & Kumar, C. S. (2023). Improved Facial Identification Using Adaptive Neuro-Fuzzy Logic Inference System. Indian Journal Of Science And Technology, 16(13), 1014–1020. https://doi.org/10.17485/ijst/v16i13.1833
Chaoufi, I., Abdelkhalek, O., & Gasbaoui, B. (2022). State of Charge Estimation of Lithium-ion Batteries Using Adaptive Neuro Fuzzy Inference System. IAES International Journal of Artificial Intelligence, 11(2), 473–484. https://doi.org/10.11591/ijai.v11.i2.pp473-484
Chopra, S., Dhiman, G., Sharma, A., Shabaz, M., Shukla, P., & Arora, M. (2021). Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/6455592
Cui, S., Yong, X., Kim, S., Hong, S., & Joe, I. (2020). An LSTM-Based Encoder-Decoder Model for State-of-Charge Estimation of Lithium-Ion Batteries. In: Silhavy, R. (Eds) Intelligent Algorithms in Software Engineering. CSOC 2020. Advances in Intelligent Systems and Computing, 1224. https://doi.org/10.1007/978-3-030-51965-0_15
Dao, V. Q., Dinh, M.-C., Kim, C. S., Park, M., Doh, C.-H., Bae, J. H., Lee, M.-K., Liu, J., & Bai, Z. (2021). Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network. Dao2021DesignOA, Energies, 14, 2634. https://api.semanticscholar.org/CorpusID:236543644
Dzaky, M., Logika, I., Dzaky Ashidqi, M., Anwar, M., Hermanu, C., Ramelan, A., & Adriyanto, F. (2021). Implementasi Logika Fuzzy untuk Pengukuran SoC Baterai Mobil Listrik yang Akurat (Fuzzy Logic Implementation for Accurate Electric Car Battery SoC Measurement). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(3), 257–264.
Hariyadi, A., Nugroho, A., & Suwarno. (2021). The origin of cycle life degradation of a lead-acid battery under constant voltage charging. International Journal of Power Electronics and Drive Systems, 12(2), 986–993. https://doi.org/10.11591/ijpeds.v12.i2.pp986-993
Kai, W., Jun, R., Xiao, F., Duan, C., & Liwei, L. (2020). State of Charge (SOC) Estimation of Lithium-ion Battery Based on Adaptive Square Root Unscented Kalman Filter. International Journal of Electrochemical Science, 15(9), 9499–9516. https://doi.org/10.20964/2020.09.84
Kollmeyer, P., Vidal, C., Naguib, M., & Skells, M. (2020). LG 18650HG2 Li-ion Battery Data and Example Deep Neural Network xEV SOC Estimator Script. Mendeley Data, 3. https://doi.org/10.17632/cp3473x7xv.3
Kumar, A. S., Aher, P. K., & Patil, S. L. (2022). SOC Estimation using Coulomb Counting and Fuzzy Logic in Lithium Battery. 2022 International Conference on Industry 4.0 Technology (I4Tech), 1–5. https://doi.org/10.1109/I4Tech55392.2022.9952949
Mawatwal, M., Mohanty, A., & S, A. G. (2020). State of Charge Estimation for Rechargeable Lithium-ion Battery using ANFIS MATLAB. International Journal of Engineering Research And, V9(03), 703–708. https://doi.org/10.17577/ijertv9is030565
Muna, M. F. Z., Purwanto, E., & Wahjono, E. (2022). Rancang Bangun Neural Network untuk Estimasi State of Charge (SoC) Pada Lead Acid Battery. April, 31–37.
Prasetyo, R. B., Nurrohim, A., Gusyairi, A., Mukhid, S., & Nurhuda, M. (2021). Evaluasi Kondisi Baterai Sistem Hybrid. Power Elektronik : Jurnal Orang Elektro, 10(2), 53–56.
Qays, M. O., Buswig, Y., Hossain, M. L., & Abu-Siada, A. (2022). Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review. CSEE Journal of Power and Energy Systems, 8(1), 105–114. https://doi.org/10.17775/CSEEJPES.2019.03060
Rachmawardani, A., Wijaya, S. K., Prawito, P., & Sopaheluwakan, A. (2024). Prediksi Banjir menggunakan ANFIS-PCA sebagai Peringatan Dini Bencana Banjir. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(2), 335. https://doi.org/10.26760/elkomika.v12i2.335
Sahoo, A., & Baitalik, S. (2022). Fuzzy Logic, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference Methodology for Soft Computation and Modeling of Ion Sensing Data of a Terpyridyl-Imidazole Based Bifunctional Receptor. Frontiers in Chemistry, 10(March), 1–16. https://doi.org/10.3389/fchem.2022.864363
Suhariningsih, S., Yulianda, F., Sunarno, E., & Nugroho, M. A. B. (2024). Battery Management System dengan Fitur Adaptive Current Protection terhadap Suhu. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(2), 498. https://doi.org/10.26760/elkomika.v12i2.498
Triawan, M. A., Yolanda, D., & Humam, F. (2024). Estimating SoC and SoH of Li-ion Battery Using Coulomb Counting Method in IoT Node Application. 2024 2nd International Symposium on Information Technology and Digital Innovation (ISITDI), 96–101. https://api.semanticscholar.org/CorpusID:274895464
Vidal, C., Kollmeyer, P., Naguib, M., Malysz, P., Gross, O., & Emadi, A. (2020). Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network. SAE International Journal of Advances and Current Practices in Mobility.
Yanaratri, D. S., Amanda, S. D., Rakhmawati, R., & others. (2023). Penerapan Adaptive Neuro-Fuzzy Inference System untuk Estimasi State of Charge Baterai Lead Acid. Prosiding Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 9(1), 120–127.
Yin, J., Lin, H., Shi, J., Lin, Z., Bao, J., Wang, Y., Lin, X., Qin, Y., Qiu, X., & Zhang, W. (2022). Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications. In Electrochemical Energy Reviews (Vol. 5, Issue 3). Springer Nature Singapore. https://doi.org/10.1007/s41918-022-00134-w
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Briliant: Jurnal Riset dan Konseptual

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.