Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) untuk Estimasi Kecepatan Motor Induksi
DOI:
https://doi.org/10.28926/briliant.v10i4.1990Keywords:
Induction motor, anfis, Speed EstimationAbstract
Three-phase induction motors are a major component in industrial machinery due to their simple construction, robustness, relatively low cost, easy maintenance, and high reliability. However, these motors have disadvantages in speed regulation due to their non-linear characteristics, which cause difficulties in maintaining a constant speed when the load changes. This research aims to maintain the speed of induction motors to remain constant by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) method. This ANFIS method goes through the stages of data collection, data processing, ANFIS system design, ANFIS training, validation testing, and finally analyzing the results. The input of the induction motor speed estimation system is through a mathematical equation model in d-q coordinates. The output of this system is speed. In this study, training and testing variations. The smallest RMSE result obtained is with the Trapzeium membership function architecture with the number of epochs 100 of 0.0187542.
References
Abdelrahim Ate, Rihab Gafar, Xiuyun Sun, & Tahleel Abozead. (2022). Three-phase AC Induction Motor Speed Control Based on Variable Speed Driver. Makara Journal of Technology, 26(2), 54–58. https://doi.org/10.7454/mst.v26i2.1523
Babanezhad, M., Behroyan, I., Marjani, A., & Shirazian, S. (2021). Artificial intelligence simulation of suspended sediment load with different membership functions of ANFIS. Neural Computing and Applications, 33(12), 6819–6833. https://doi.org/10.1007/s00521-020-05458-6
Bhowate, A., Aware, M., & Sharma, S. (2019). Predictive Torque Control with Online Weighting Factor Computation Technique to Improve Performance of Induction Motor Drive in Low Speed Region. IEEE Access, 7, 42309–42321. https://doi.org/10.1109/ACCESS.2019.2908289
Hadla, H., & Santos, F. (2022). Performance Comparison of Field-oriented Control, Direct Torque Control, and Model-predictive Control for SynRMs. Chinese Journal of Electrical Engineering, 8(1), 24–37. https://doi.org/10.23919/CJEE.2022.000003
Hossain, M. I., Shafiullah, M., & Abido, M. (2020). Induction motor speed control employing lm-nn based adaptive pi controller. Renewable Energy and Power Quality Journal, 18, 97–102. https://doi.org/10.24084/repqj18.239
Hui, J., Gao, M., & Wang, Y. (2019). Design and optimisation of transverse flux machine with passive rotor and flux-concentrating structure. IET Electric Power Applications, 13(7), 922–931. https://doi.org/10.1049/iet-epa.2018.5793
Isqeel Abdullateef, A., Faiz Sanusi, M., & Fagbolagun, S. (2020). Induction Motor Stator Fault Classification Using PCA-ANFIS Technique. 19(1), 33–40. www.elektrika.utm.my
Joshi, G., & Pinto Pius, A. J. (2020). ANFIS controller for vector control of three phase induction motor. Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1177–1185. https://doi.org/10.11591/ijeecs.v19.i3.pp1177-1185
Kondelaji, M. A. J., & Mirsalim, M. (2020). Segmented-Rotor Modular Switched Reluctance Motor with High Torque and Low Torque Ripple. IEEE Transactions on Transportation Electrification, 6(1), 62–72. https://doi.org/10.1109/TTE.2020.2969356
Kumar, P., & Shankar Hati, A. (2021). Convolutional neural network with batch normalisation for fault detection in squirrel cage induction motor. IET Electric Power Applications, 15(1), 39–50. https://doi.org/10.1049/elp2.12005
Lee, J. H., Pack, J. H., & Lee, I. S. (2019). Fault diagnosis of induction motor using convolutional neural network. Applied Sciences (Switzerland), 9(15). https://doi.org/10.3390/app9152950
Md Mahmud, S.M. A. Motakabber, A.H.M. Zahirul Alam, & Anis Nurashikin Nordin. (2020). Adaptive PID Controller Using for Speed Control of the BLDC Motor: Vol. IEEE (ICSE). 2020 IEEE International Conference on Semiconductor Electronics (ICSE).
Menaem, A. A., Elgamal, M., Abdel-Aty, A. H., Mahmoud, E. E., Chen, Z., & Hassan, M. A. (2021). A Proposed ANN-Based Acceleration Control Scheme for Soft Starting Induction Motor. IEEE Access, 9, 4253–4265. https://doi.org/10.1109/ACCESS.2020.3046848
Mugheri, N. H., & Keerio, M. U. (2021). An Optimal Fuzzy Logic-based PI Controller for the Speed Control of an Induction Motor using the V/F Method. In Technology & Applied Science Research (Vol. 11, Issue 4). www.etasr.com
O’Rourke, C. J., Qasim, M. M., Overlin, M. R., & Kirtley, J. L. (2019). A Geometric Interpretation of Reference Frames and Transformations: Dq0, Clarke, and Park. IEEE Transactions on Energy Conversion, 34(4), 168–17. https://doi.org/10.1109/TEC.2019.2941175
Purwanto, E., Ferdiansyah, I., Dwitya Nugraha, S., & Qudsi, O. A. (2021). The Effect of ANFIS Controller on The Performance of Induction Motor Drives in Low-Speed Operation Based on IFOC. 11(2).
Putra, R. R., Setiawan, P., & Sudibya, B. (2022). Analisis Pemodelan Dinamik Motor Sinkron Tiga Fasa Pada Percobaan Tegangan Tidak Seimbang. AVITEC, 4(1), 43. https://doi.org/10.28989/avitec.v4i1.1163
Raharja, M. A., Darmawan, I. D. M. B. A., Nilakusumawati, D. P. E., & Supriana, I. W. (2021). Analysis of membership function in implementation of adaptive neuro fuzzy inference system (ANFIS) method for inflation prediction. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012005
Rahmatullah, R., Serteller, N. F. O., & Topuz, V. (2023). Modeling and Simulation of Faulty Induction Motor in DQ Reference Frame Using MATLAB/SIMULINK with MATLAB/GUIDE for Educational Purpose. International Journal of Education and Information Technologies, 17, 7–20. https://doi.org/10.46300/9109.2023.17.2
Rajesh, P., Shajin, F. H., & Vijaya Anand, N. (2021). An Efficient Estimation Model for Induction Motor Using BMO-RBFNN Technique. Process Integration and Optimization for Sustainability, 5(4), 777–792. https://doi.org/10.1007/s41660-021-00177-4
Ravikumar, S., & Kavitha, D. (2021). IOT based autonomous car driver scheme based on ANFIS and black widow optimization. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02725-1
Rusli, M. R. (2019). PERFORMA PENGENDALI ARUS STATOR DENGAN MENGGUNAKAN ANFIS PADA PENGEMUDIAN MOTOR INDUKSI BERBASIS VECTOR CONTROL. INOVTEK POLBENG, 9(1), 169. https://doi.org/10.35314/ip.v9i1.987
Vidhya, K., & Shanmugalakshmi, R. (2020). Modified adaptive neuro-fuzzy inference system (M-ANFIS) based multi-disease analysis of healthcare Big Data. Journal of Supercomputing, 76(11), 8657–8678. https://doi.org/10.1007/s11227-019-03132-w
Wang, H., Pei, X., Yin, B., Eastham, J. F., Vagg, C., & Zeng, X. (2022). A Novel Double-Sided Offset Stator Axial-Flux Permanent Magnet Motor for Electric Vehicles. World Electric Vehicle Journal, 13(3). https://doi.org/10.3390/wevj13030052
Widjonarko, Setiawan, A., Rudiyanto, B., Utomo, S. B., & Setiyo, M. M. (2021). Characteristic of Fuzzy, ANN, and ANFIS for Brushless DC Motor Controller: An Evaluation by Dynamic Test. International Journal of Integrated Engineering, 13(6), 274–284. https://doi.org/10.30880/ijie.2021.13.06.024
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Briliant: Jurnal Riset dan Konseptual

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




