Evaluasi Kinerja Model Arima dalam Peramalan Konsumsi Energi Gedung Bertingkat
DOI:
https://doi.org/10.28926/briliant.v10i3.1967Keywords:
ARIMA, energy optimization, Accuracy, parameters, short-termAbstract
In an effort to manage and optimize the use of energy in these buildings, the ARIMA model (Autoregressive Integrated Moving Average) emerged as a very important analytical tool. The primary objective of this research is to investigate and explore how ARIMA parameter settings can be modified to improve the accuracy of energy consumption predictions on stairwell buildings. Based on an in-depth analysis of existing literature as well as empirical data, it was found that the ARIMA model, by leveraging time row kastasioneran and the use of univariate data, showed great potential in producing highly accurate short-term predictions. In this study, it was found that by performing the correct configuration of ARIMA parameters, the model was able to a level of accuracy with MAPE of 5,317% and RMSE of 8,7. These results show an excellent level of conformity, indicating that the ARIMA model can be effectively used to improve the accuracy of prediction of energy consumption in stairwell buildings. The findings of this study confirm that with proper adjustment of parameters, ARIMA can be a very useful tool in more efficient energy management in the building sector, which can ultimately contribute to reducing unnecessary energy consumption as well as improving overall energy efficiency.
References
Alduailij, M. A., Petri, I., Rana, O., Alduailij, M. A., & Aldawood, A. S. (2021). Forecasting peak energy demand for smart buildings. Journal of Supercomputing, 77(6), 6356–6380. https://doi.org/10.1007/s11227-020-03540-3
Amarulloh, I., Kartini, I., Aribowo, W., & Haryudo, S. (2021). Peramalan Daya Listrik Jangka Pendek Pada Smart Grid Photovoltaic Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) Dengan Pengaruh Sensor Suhu Pada Mode Hybrid. Jurnal Teknik Elektro., 10(3), 769.
Fara, L., Diaconu, A., Craciunescu, D., & Fara, S. (2021). Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. International Journal of Photoenergy, 2021. https://doi.org/10.1155/2021/6777488
Hadjout, D., Torres, J. F., Troncoso, A., Sebaa, A., & Martínez-Álvarez, F. (2022). Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy, 243. https://doi.org/10.1016/j.energy.2021.123060
Kaytez, F. (2020). A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 197, 117200. https://doi.org/10.1016/j.energy.2020.117200
Lagos, A., Caicedo, J. E., Coria, G., Quete, A. R., Martínez, M., Suvire, G., & Riquelme, J. (2022). State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems. Energies, 15(18). https://doi.org/10.3390/en15186545
Li, K., Xue, W., Tan, G., & Denzer, A. S. (2020). A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms. Building Services Engineering Research and Technology, 41(1), 108–127. https://doi.org/10.1177/0143624419843647
Lubis, R. M. F., Situmorang, Z., & Rosnelly, R. (2021). Autoregressive Integrated Moving Average (ARIMA-Box Jenkins) Pada Peramalan Komoditas Cabai Merah di Indonesia. Jurnal Media Informatika Budidarma, 5(2), 485. https://doi.org/10.30865/mib.v5i2.2927
Ma, P., Cui, S., Chen, M., Zhou, S., & Wang, K. (2023). Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System. Energies, 16(15). https://doi.org/10.3390/en16155809
Mathumitha, R., Rathika, P., & Manimala, K. (2024). Intelligent deep learning techniques for energy consumption forecasting in smart buildings: a review. In Artificial Intelligence Review (Vol. 57, Issue 2). Springer Netherlands. https://doi.org/10.1007/s10462-023-10660-8
Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246–1255. https://doi.org/10.1016/j.egyr.2021.02.006
Ribeiro, A. M. N. C., Do Carmo, P. R. X., Endo, P. T., Rosati, P., & Lynn, T. (2022). Predicción de carga a corto y muy corto plazo a nivel de empresa para almacenes: Comparación de modelos de aprendizaje automático y aprendizaje profundo. Energías, 15(3).
Susanti, R., & Adji, A. R. (2020). Analisis Peramalan Ihsg Dengan Time Series Modeling Arima. Jurnal Manajemen Kewirausahaan, 17(1), 97. https://doi.org/10.33370/jmk.v17i1.393
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Briliant: Jurnal Riset dan Konseptual

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.