Performance Analysis of Co-firing Using Palm Kernel Shells in Chain Grate Stoker Coal Fired Power Plant 2 x 7 MW
Abstract
Co-firing is the efforts to reduce the use of fossil fuel (coal) form steam power plant. Adding biomass as a partial fuel to the boiler to reduce coal consumption thereby reducing carbon dioxide emissions which can have an impact on the greenhouse effect. This co-firing study implemented 5-20% palm kernel shells. The emission has decreased very significantly in the use of biomass by 20%, Carbon dioxide (CO2) from 7% to 0.9% and carbon monoxide (CO) from 759 Mg/Nm3 to 105 Mg/Nm3. Slagging index during is still within safe limits. Fouling index when coal firing and co-firings 5%, 15% and 20% are in the high category, while co-firing is 10% in the severe category. Base to acid ratio during co-firing test 5%, 10% and 15% in the high/severe category, while co-firing is 20% is still within safe limits. The potential for corrosion due to the presence of chlorine is Cl-induced active oxidation minor. The toxic properties samples obtained from various co-firings are still in safe condition and meet quality standards.
Full Text:
PDFReferences
IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Khorshidi, Z., Ho, M. T., & Wiley, D. E. (2013). Techno-economic study of biomass co-firing with and without CO2 capture in an Australian black coal-fired power plant. Energy Procedia, 37, 6035-6042.
Birol, F., & Argiri, M. (1999). World energy prospects to 2020. Energy, 24(11), 905-918.
Sekretariat Jendral Dewan Energi Nasional. (2022). https://www.den.go.id/index.php/publikasi/index/EnergyOutlook
Buku Laporan Neraca Energi Nasional 2022 https://www.den.go.id/index.php/publikasi/index/EnergyOutlook
Lin, B., & Raza, M. Y. (2019). Analysis of energy related CO2 emissions in Pakistan. Journal of cleaner production, 219, 981-993.
Millot, A., Krook-Riekkola, A., & Maïzi, N. (2020). Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy, 139, 111358.
Cassarino, T. G., Sharp, E., & Barrett, M. (2018). The impact of social and weather drivers on the historical electricity demand in Europe. Applied energy, 229, 176-185.
Kumar Shukla, A., Ahmad, Z., Sharma, M., Dwivedi, G., Nath Verma, T., Jain, S., ... & Zare, A. (2020). Advances of carbon capture and storage in coal-based power generating units in an Indian context. Energies, 13(16), 4124.
Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of The Total Environment, 761, 143203.
Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 19(2), 797-849.
Pudasainee, D., Kurian, V., & Gupta, R. (2020). Coal: Past, present, and future sustainable use. Future Energy, 21-48.
United Nation, “Energy Transition”, 2021
Undang-undang Republik Indonesia No. 16 Tahun 2016 “Tentang Pengesahaan Paris Agreement to The United Nation Framework Convention on Climate Change”, 2021
Peraturan Presiden No. 22 Tahun 2017 “Tentang Rencana Umum Energi Nasional”, 2017
Clancy, J. M., Curtis, J., & Ó’Gallachóir, B. (2018). Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030–Interactions, impacts and conflicts. Energy Policy, 123, 579-593.
Murphy, F., & McDonnell, K. (2017). Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104, 80-88.
Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H., & Stone, E. A. (2015). Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel, 162, 111-120.
Xu, Y., Yang, K., Zhou, J., & Zhao, G. (2020). Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability, 12(9), 3692.
Riaza, J., Khatami, R., Levendis, Y. A., Álvarez, L., Gil, M. V., Pevida, C., ... & Pis, J. J. (2014). Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 64, 162-174.
Sami, M., Annamalai, K., & Wooldridge, M. (2001). Co-firing of coal and biomass fuel blends. Progress in energy and combustion science, 27(2), 171-214.
Ashraf, A., Sattar, H., & Munir, S. (2019). Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel, 235, 504-514.
Tillman, D.; Duong, D.; Harding, N. Chapter 4—Blending Coal with Biomass: Cofiring Biomass with Coal. In Solid Fuel Blending; Butterworth-Heinemann: Boston, MA, USA, 2012; pp. 125–200.
Demirbaş, A. (2003). Sustainable cofiring of biomass with coal. Energy conversion and management, 44(9), 1465-1479.
Tursi, A. (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962.
Griffin, W. M., Michalek, J., Matthews, H. S., & Hassan, M. N. A. (2014). Availability of biomass residues for co-firing in Peninsular Malaysia: Implications for cost and GHG emissions in the electricity sector. Energies, 7(2), 804-823.
Amann, M., Klimont, Z., An Ha, T., Rafaj, P., Kiesewetter, G., Gomez Sanabria, A., ... & Tung, N. N. (2019). Future air quality in Ha Noi and northern Vietnam.
Truong, A. H., Ha-Duong, M., & Tran, H. A. (2022). Economics of co-firing rice straw in coal power plants in Vietnam. Renewable and Sustainable Energy Reviews, 154, 111742.
Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and bioenergy, 34(5), 620-629.
Agbor, E., Zhang, X., & Kumar, A. (2014). A review of biomass co-firing in North America. Renewable and Sustainable Energy Reviews, 40, 930-943.
BPS. (2022) laporan statistic Indonesia https://www.bps.go.id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html
Kaniapan, S., Hassan, S., Ya, H., Patma Nesan, K., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability, 13(6), 3110.
Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies: Harvesting potential in India and Indonesia. Renewable and Sustainable Energy Reviews, 22, 332-345.
Mahidin, E., Zaki, M., Hamdani, M., Hisbullah, R. M., & Susanto, H. (2020). Potential and Utilization of Biomass for Heat Energy in Indonesia: A Review. International Journal of Scientific & Technology Research, 2(10), 331-344.
PT PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero), (2021).
Sampson, G. R., Richmond, A. P., Brewster, G. A., & Gasbarro, A. F. (1991). Cofiring of wood chips with coal in interior Alaska. Forest products journal, 41(5), 53-56.
Baxter, L. (2005). Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel, 84(10), 1295-1302.
Agbor, E., Oyedun, A. O., Zhang, X., & Kumar, A. (2016). Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Applied Energy, 169, 433-449.
Basu, P., Butler, J., & Leon, M. A. (2011). Biomass co-firing World Chemical Engineering Journal Vol.5, No.1, (2021), pp. 25 – 32
Dam-Johansen, K., Frandsen, F. J., Jensen, P. A., & Jensen, A. D. (2013). Co-firing of coal with biomass and waste in full-scale suspension-fired boilers. In Cleaner combustion and sustainable world (pp. 781-800). Springer Berlin Heidelberg.
Giaier, T. A., & Loviska, T. R. (1997). Vibrating grate stokers for the sugar industry. In Proc S Afr Sug Technol Ass (p. 71).
Li, Z., Zhao, W., Li, R., Wang, Z., Li, Y., & Zhao, G. (2009). Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler. Bioresource technology, 100(7), 2278-2283.
Tambe, S. S., Naniwadekar, M., Tiwary, S., Mukherjee, A., & Das, T. B. (2018). Prediction of coal ash fusion temperatures using computational intelligence based models. International Journal of Coal Science & Technology, 5, 486-507.
Magdziarz, A., Dalai, A. K., & Koziński, J. A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel, 176, 135-145.
Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L. I., Jones, J. M., & Nimmo, W. (2015). Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel, 141, 275-284..
Pronobis, M., Kalisz, S., & Polok, M. (2013). The impact of coal characteristics on the fouling of stoker-fired boiler convection surfaces. Fuel, 112, 473-482.
DOI: http://dx.doi.org/10.28926/briliant.v8i2.1349
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Briliant: Jurnal Riset dan Konseptual

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Published by:
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Nahdlatul Ulama Blitar