Penghindaran Jalur Rintangan untuk Kendaraan Pick up Autonomous Berdasarkan Artificial Potential Field Algorithm

Bayu Ramadhan, Mohamad Yamin

Abstract


Teknologi industri dan akademisi berperan penting dalam menyelesaikan permasalahan transfortasi, terutama perkembangan teknologi kendaraan autonomous. Tugas penting kendaraan autonomous adalah bergerak mengenali lingkungan dan automatic ketika kendaraan melaju sehingga mendeteksi terjadinya hambatan. Tujuannya adalah mengurangi kecelakaan lalu lintas. Untuk menghasilkan sistem yang efisien, paper ini menggunakan kendaraan pickup dengan kecepatan waktu kendaraan 18 sec dan metode artificial potential field algorithm. Kemudian, mensimulasikan menggunakan software carsim/matlab dengan kecepatan laju 80 km/h dan 40 km/h. Selajutnya, perencanaan yang telah disimulasikan dapat diimplementasikan di jalur kendaraan autonomous sebagai manuver yang baik, menghasilkan kinerja jalur kendala yang efektif, menghasilkan keamanan dan kenyamanan berkendara.

Keywords


autonomous; artificial potential field; carsim; matlab

References


An, L., Chen, T., Cheng, A., & Fang, W. (2017). Simulation on the Path Planning of Intelligent Vehicles Based on Artificial Potential Field Algorithm. Automot. Eng, 39, 1451-1456.

Caijing, X., & Hui, C. (2013). A Research on Local Path Planning for Autonomous Vehicles Based on Improved APF Method. Automotive Engineering(9), 11.

Chen, H., Xiong, G., Gong, J., & Jiang, Y. (2014). Introduction to Self-Driving Car. Beijing Institute of Technology Press: Beijing, China, 32-64.

Chen, Y., Peng, H., & Grizzle, J. (2017). Obstacle avoidance for low-speed autonomous vehicles with barrier function. IEEE Transactions on Control Systems Technology, 26(1), 194-206.

Fu, X., Jiang, Y., Huang, D., Huang, K., Wang, J., & Lu, G. (2015). A novel real-time trajectory planning algorithm for intelligent vehicles. Contr. Dec, 30(10), 1751-1758.

Gong, J., Jiang, Y., & Xu, W. (2014). Model predictive control for self-driving vehicles. Beijing Institute of Technology Press: Beijing, China.

Ji, J., & Ji, P. (2016). P, H.; Li, Y. Design of 3D Virtual Dangerous Potential Field for Vehicle Active Collision Avoidance. Automot. Eng, 38, 1065-1071.

Ji, J., Khajepour, A., Melek, W. W., & Huang, Y. (2016). Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 66(2), 952-964.

Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442.

Lee, U., Yoon, S., Shim, H., Vasseur, P., & Demonceaux, C. (2014). Local path planning in a complex environment for self-driving car. Paper presented at the The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent.

Li, X., Sun, Z., Cao, D., He, Z., & Zhu, Q. (2015). Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications. IEEE/ASME Transactions on Mechatronics, 21(2), 740-753.

Liu, Y., Wang, X., Li, L., Cheng, S., & Chen, Z. (2019). A novel lane change decision-making model of autonomous vehicle based on support vector machine. IEEE Access, 7, 26543-26550.

Luo, Y., Xiang, Y., Cao, K., & Li, K. (2016). A dynamic automated lane change maneuver based on vehicle-to-vehicle communication. Transportation Research Part C: Emerging Technologies, 62, 87-102.

Paleti, R., Eluru, N., & Bhat, C. R. (2010). Examining the influence of aggressive driving behavior on driver injury severity in traffic crashes. Accident Analysis & Prevention, 42(6), 1839-1854.

Pan, Z., Li, J. Q., Hu, K. M., & Zhu, H. (2015). Intelligent vehicle path planning based on improved artificial potential field method. Paper presented at the Applied Mechanics and Materials.

Rasekhipour, Y., Khajepour, A., Chen, S.-K., & Litkouhi, B. (2016). A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(5), 1255-1267.

Shufeng, W., & Junxin, Z. (2018). A Research on Overtaking Lane Planning for Intelligent Vehicles Based on Improved Artificial Potential Field Method. Automobile Technology(3), 2.

Wahid, N., Zamzuri, H., Rahman, M. A. A., Kuroda, S., & Raksincharoensak, P. (2017). Study on potential field based motion planning and control for automated vehicle collision avoidance systems. Paper presented at the 2017 IEEE International Conference on Mechatronics (ICM).

Wang, H., Huang, Y., Khajepour, A., Liu, T., Qin, Y., & Zhang, Y. (2018). Local Path Planning for Autonomous Vehicles: Crash Mitigation. Paper presented at the 2018 IEEE Intelligent Vehicles Symposium (IV).

Wang, J., Wu, J., & Li, Y. (2016). Concept, Principle and Modeling of Driving Risk Field Based on Driver-vehicle-road Interaction. China Journal of Highway and Transport, 29, 105-114.

Wang, P., Gao, S., Li, L., Cheng, S., & Zhao, L. (2019). Automatic steering control strategy for unmanned vehicles based on Robust Backstepping sliding mode control theory. IEEE Access, 7, 64984-64992.




DOI: http://dx.doi.org/10.28926/briliant.v6i1.574

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Briliant: Jurnal Riset dan Konseptual

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:

Lembaga Penelitian dan Pengabdian Masyarakat

Universitas Nahdlatul Ulama Blitar