Performance Analysis of Co-firing Using Palm Kernel Shells in Chain Grate Stoker Coal Fired Power Plant 2 x 7 MW

Authors

  • Irwan Firmanto Nainggolan DIPONEGORO UNIVERSITY
  • Hadiyanto Hadiyanto DIPONEGORO UNIVERSITY
  • Tony Suryo Utomo DIPONEGORO UNIVERSITY

DOI:

https://doi.org/10.28926/briliant.v8i2.1349

Abstract

Co-firing is the efforts to reduce the use of fossil fuel (coal) form steam power plant. Adding biomass as a partial fuel to the boiler to reduce coal consumption thereby reducing carbon dioxide emissions which can have an impact on the greenhouse effect. This co-firing study implemented 5-20% palm kernel shells. The emission has decreased very significantly in the use of biomass by 20%, Carbon dioxide (CO2) from 7% to 0.9% and carbon monoxide (CO) from 759 Mg/Nm3 to 105 Mg/Nm3. Slagging index during is still within safe limits. Fouling index when coal firing and co-firings 5%, 15% and 20% are in the high category, while co-firing is 10% in the severe category. Base to acid ratio during co-firing test 5%, 10% and 15% in the high/severe category, while co-firing is 20% is still within safe limits. The potential for corrosion due to the presence of chlorine is Cl-induced active oxidation minor. The toxic properties samples obtained from various co-firings are still in safe condition and meet quality standards.

References

IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Khorshidi, Z., Ho, M. T., & Wiley, D. E. (2013). Techno-economic study of biomass co-firing with and without CO2 capture in an Australian black coal-fired power plant. Energy Procedia, 37, 6035-6042.

Birol, F., & Argiri, M. (1999). World energy prospects to 2020. Energy, 24(11), 905-918.

Sekretariat Jendral Dewan Energi Nasional. (2022). https://www.den.go.id/index.php/publikasi/index/EnergyOutlook

Buku Laporan Neraca Energi Nasional 2022 https://www.den.go.id/index.php/publikasi/index/EnergyOutlook

Lin, B., & Raza, M. Y. (2019). Analysis of energy related CO2 emissions in Pakistan. Journal of cleaner production, 219, 981-993.

Millot, A., Krook-Riekkola, A., & Maïzi, N. (2020). Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy, 139, 111358.

Cassarino, T. G., Sharp, E., & Barrett, M. (2018). The impact of social and weather drivers on the historical electricity demand in Europe. Applied energy, 229, 176-185.

Kumar Shukla, A., Ahmad, Z., Sharma, M., Dwivedi, G., Nath Verma, T., Jain, S., ... & Zare, A. (2020). Advances of carbon capture and storage in coal-based power generating units in an Indian context. Energies, 13(16), 4124.

Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of The Total Environment, 761, 143203.

Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 19(2), 797-849.

Pudasainee, D., Kurian, V., & Gupta, R. (2020). Coal: Past, present, and future sustainable use. Future Energy, 21-48.

United Nation, “Energy Transitionâ€, 2021

Undang-undang Republik Indonesia No. 16 Tahun 2016 “Tentang Pengesahaan Paris Agreement to The United Nation Framework Convention on Climate Changeâ€, 2021

Peraturan Presiden No. 22 Tahun 2017 “Tentang Rencana Umum Energi Nasionalâ€, 2017

Clancy, J. M., Curtis, J., & Ó’Gallachóir, B. (2018). Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030–Interactions, impacts and conflicts. Energy Policy, 123, 579-593.

Murphy, F., & McDonnell, K. (2017). Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104, 80-88.

Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H., & Stone, E. A. (2015). Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel, 162, 111-120.

Xu, Y., Yang, K., Zhou, J., & Zhao, G. (2020). Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability, 12(9), 3692.

Riaza, J., Khatami, R., Levendis, Y. A., Ãlvarez, L., Gil, M. V., Pevida, C., ... & Pis, J. J. (2014). Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 64, 162-174.

Sami, M., Annamalai, K., & Wooldridge, M. (2001). Co-firing of coal and biomass fuel blends. Progress in energy and combustion science, 27(2), 171-214.

Ashraf, A., Sattar, H., & Munir, S. (2019). Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel, 235, 504-514.

Tillman, D.; Duong, D.; Harding, N. Chapter 4—Blending Coal with Biomass: Cofiring Biomass with Coal. In Solid Fuel Blending; Butterworth-Heinemann: Boston, MA, USA, 2012; pp. 125–200.

DemirbaÅŸ, A. (2003). Sustainable cofiring of biomass with coal. Energy conversion and management, 44(9), 1465-1479.

Tursi, A. (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962.

Griffin, W. M., Michalek, J., Matthews, H. S., & Hassan, M. N. A. (2014). Availability of biomass residues for co-firing in Peninsular Malaysia: Implications for cost and GHG emissions in the electricity sector. Energies, 7(2), 804-823.

Amann, M., Klimont, Z., An Ha, T., Rafaj, P., Kiesewetter, G., Gomez Sanabria, A., ... & Tung, N. N. (2019). Future air quality in Ha Noi and northern Vietnam.

Truong, A. H., Ha-Duong, M., & Tran, H. A. (2022). Economics of co-firing rice straw in coal power plants in Vietnam. Renewable and Sustainable Energy Reviews, 154, 111742.

Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and bioenergy, 34(5), 620-629.

Agbor, E., Zhang, X., & Kumar, A. (2014). A review of biomass co-firing in North America. Renewable and Sustainable Energy Reviews, 40, 930-943.

BPS. (2022) laporan statistic Indonesia https://www.bps.go.id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html

Kaniapan, S., Hassan, S., Ya, H., Patma Nesan, K., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability, 13(6), 3110.

Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies: Harvesting potential in India and Indonesia. Renewable and Sustainable Energy Reviews, 22, 332-345.

Mahidin, E., Zaki, M., Hamdani, M., Hisbullah, R. M., & Susanto, H. (2020). Potential and Utilization of Biomass for Heat Energy in Indonesia: A Review. International Journal of Scientific & Technology Research, 2(10), 331-344.

PT PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero), (2021).

Sampson, G. R., Richmond, A. P., Brewster, G. A., & Gasbarro, A. F. (1991). Cofiring of wood chips with coal in interior Alaska. Forest products journal, 41(5), 53-56.

Baxter, L. (2005). Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel, 84(10), 1295-1302.

Agbor, E., Oyedun, A. O., Zhang, X., & Kumar, A. (2016). Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Applied Energy, 169, 433-449.

Basu, P., Butler, J., & Leon, M. A. (2011). Biomass co-firing World Chemical Engineering Journal Vol.5, No.1, (2021), pp. 25 – 32

Dam-Johansen, K., Frandsen, F. J., Jensen, P. A., & Jensen, A. D. (2013). Co-firing of coal with biomass and waste in full-scale suspension-fired boilers. In Cleaner combustion and sustainable world (pp. 781-800). Springer Berlin Heidelberg.

Giaier, T. A., & Loviska, T. R. (1997). Vibrating grate stokers for the sugar industry. In Proc S Afr Sug Technol Ass (p. 71).

Li, Z., Zhao, W., Li, R., Wang, Z., Li, Y., & Zhao, G. (2009). Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler. Bioresource technology, 100(7), 2278-2283.

Tambe, S. S., Naniwadekar, M., Tiwary, S., Mukherjee, A., & Das, T. B. (2018). Prediction of coal ash fusion temperatures using computational intelligence based models. International Journal of Coal Science & Technology, 5, 486-507.

Magdziarz, A., Dalai, A. K., & Koziński, J. A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel, 176, 135-145.

Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L. I., Jones, J. M., & Nimmo, W. (2015). Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel, 141, 275-284..

Pronobis, M., Kalisz, S., & Polok, M. (2013). The impact of coal characteristics on the fouling of stoker-fired boiler convection surfaces. Fuel, 112, 473-482.

Downloads

Published

2023-05-30

Issue

Section

Engineering and Technology