Evaluasi Hasil Kinerja Tekno-Ekonomi Pembangkit Listrik Tenaga Surya (PLTS) Pada Bangunan Perguruan Tinggi di Indonesia

Luthfansyah Mohammad, Aulia Istiqomah, Ahmad Ridlo Hanifudin Tahier, Dhani Nur Indra Syamputra, Lisa’ Yihaa Roodhiyah

Abstract


Dimulainya kegiatan sekolah normal dan universitas membuat sektor pendidikan mengalami peningkatan konsumsi listrik dibandingkan tahun-tahun sebelumnya sebelum merebaknya pandemi. Sayangnya, peningkatan konsumsi listrik berbanding lurus dengan peningkatan emisi yang besar. Oleh karena itu, diperlukan penggunaan teknologi energi terbarukan yang ramah lingkungan yang dapat langsung diterapkan di bidang pendidikan. Studi ini berfokus pada evaluasi kinerja sistem panel surya yang telah terpasang di Gedung Dekanat Universitas Diponegoro, Indonesia. Dua metode digabungkan dalam melakukan analisis; Simulasi perangkat lunak PVsyst Versi 7.0, dan penilaian langsung. Hasil asesmen lapangan menunjukkan bahwa sistem yang terpasang mampu menghasilkan energi sebesar 37.068 MWh per tahun dan hanya memiliki selisih sebesar 3.372 MWh saat disimulasikan. Terdapat kerugian sebesar 2,02% dari nilai produksi ideal yang disebabkan oleh beberapa faktor klimatologis dan teknis. Secara umum dengan target penghematan energi sebesar 16,6%, sistem yang dibangun berhasil mencapai 16,51%. Analisis kelayakan ekonomi menunjukkan bahwa nilai Levelized Cost of Electricity adalah Rp. 1.153,93 per kWh, nilai Payback Period 9,4 tahun, Net Present Value sekitar Rp. 364.331.588,4, dan Return of Investment sebesar 102,1%. Akhirnya, berdasarkan penilaian evaluasi, dapat diputuskan bahwa secara teknis sistem dapat bekerja dengan lancar sesuai target yang ditentukan, memiliki proyeksi ekonomi yang menguntungkan, dan memiliki potensi nilai investasi yang positif

Keywords


Asesmen Energi; Ekonomi Energi; Simulasi Pvsyst; Sistem Tenaga; Tenaga Surya;

References


Abbas, M., & Merzouk, N. K. (2012). Techno economic study of solar thermal power plants for centralized electricity generation in Algeria. 179–183.

Alramlawi, M., & Li, P. (2020). Design optimization of a residential pv-battery microgrid with a detailed battery lifetime estimation model. IEEE Transactions on Industry Applications, 56(2), 2020–2030. https://doi.org/10.1109/TIA.2020.2965894

Belmahdi, B., & Bouardi, A. El. (2020). ScienceDirect Available ScienceDirect ScienceDirect Solar Potential Assessment using PVsyst Software in the Northern Solar Potential Assessment using PVsyst Software in the Northern Zone of Morocco. Procedia Manufacturing, 46(2019), 738–745. https://doi.org/10.1016/j.promfg.2020.03.104

Dc, W. (2022). Tracking SDG7 progress across targets: Indicators and data.

Fuera, R., & Red, D. E. L. A. (2021). OFF-GRID RENEWABLE ENERGY STATISTICS 2021 STATISTIQUES D ’ ÉNERGIE RENOUVELABLE HORS RÉSEAU 2021 ESTADÍSTICAS DE ENERGÍA.

Hankins, M. (2010). STAND-ALONE SOLAR ELECTRIC.

Hart, D. W. (2011). Power Electronic (1st ed.). McGraw-Hill.

International Renewable Energy Agency (IRENA). (2018). Renewable Energy Market Analysis: Southeast Asia. In Irena.

IRENA. (2018). Measurement and estimation of off-grid solar , hydro and biogas energy.

IRENA. (2019). Renewable Energy Statistics 2019. In International Renewable Energy Agency (Vol. 1, Issue 1).

Istiqomah, A., Mohammad, L., Tahier, A. R. H., Syamputra, D. N. I., & Roodhiyah, L. Y. (2022). Prediction and Gaussian Distribution Analysis of Power Consuming in University Building Using Bidirectional Long Short-Term Memory Deep Learning. ICEECIT 2022 - Proceedings: 2022 International Conference on Electrical Engineering, Computer and Information Technology, 167–173. https://doi.org/10.1109/ICEECIT55908.2022.10030182

Luthfansyah, M., Suyanto, S., Bakarr, A., & Bangura, M. (2020). Evaluation and Comparison of DC-DC Power Converter Variations in Solar Panel Systems Using Maximum Power Point Tracking ( MPPT ) Flower Pollination Algorithm ( FPA ) Control. 00026, 1–9.

Magribi, H., Sultan, N., Riau, S. K., Soebrantas, J. H., 155, N., & Baru, S. (n.d.). Merancang Pompa Air Tenaga Surya pada Perkebunan Semangka. https://doi.org/10.28926/briliant.v7i3

Mohammad, L., Asy, M. K., & Izdiharrudin, M. F. (2020). Performance Enhancement of Solar Panels Using Adaptive Velocity-Particle Swarm Optimization ( AVPSO ) Algorithm for Charging Station as an Effort for Energy Security. 3(2), 107–116.

Pathway, C. (2022). WORLD ENERGY TRANSITIONS OUTLOOK 2022.

Paudel, B., Regmi, N., Phuyal, P., Neupane, D., Hussain, M. I., Kim, D. H., & Kafle, S. (2021). Techno-economic and environmental assessment of utilizing campus building rooftops for solar PV power generation Techno-economic and environmental assessment of utilizing campus building rooftops for solar PV power generation. International Journal of Green Energy, 00(00), 1–13. https://doi.org/10.1080/15435075.2021.1904946

Prasetyono, E., Mohammad, L., & Murdianto, F. D. (2020). Performance of ACO-MPPT and Constant Voltage Method for Street Lighting Charging System. 15(June), 235–244.

RASHID, M. H. (2001). POWER ELECTRONICS HANDBOOK (J. D. Irwin, Ed.; 1st ed.). Academic Press.

Renewable, I., & Agency, E. (n.d.). Renewable Technology Innovation Indicators : Mapping progress in costs , patents and standards.

Renewable, I., & Agency, E. (2022). RENEWABLE CAPACITY STATISTICS 2022 STATISTIQUES DE CAPACITÉ RENOUVELABLE 2022 ESTADÍSTICAS DE CAPACIDAD RENOVABLE 2022.

Renewable, I., Agency, E., & Fao, A. O. (n.d.). Renewable energy for agri-food systems.

Study, A. C. (2015). Advantages and Challenges of DC Microgrid for Commercial Building. 1st IEEE International Conference on DC Microgrids, 355–358.




DOI: http://dx.doi.org/10.28926/briliant.v8i2.1360

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Briliant: Jurnal Riset dan Konseptual

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:

Lembaga Penelitian dan Pengabdian Masyarakat

Universitas Nahdlatul Ulama Blitar