Model Faktor Yang Memengaruhi Angka Partisipasi Kasar Sekolah Dasar di Jawa Timur Menggunakan Regresi Data Panel

Sulis Ni'matun Naharin⁽¹⁾, Rizka Rizqi Robby⁽²⁾, Rachmadania Akbarita⁽³⁾

Universitas Nahdlatul Ulama Blitar Jl. Masjid No.22, Kauman, Kec. Kepanjenkidul, Kota Blitar, Indonesia

Email: ¹sulisnaharin23@gmail.com, ²rizka.ertiga@gmail.com

Tersedia Online di

http://www.jurnal.unublitar.ac.id/index. php/briliant

Sejarah Artikel

Diterima pada 6 Januari 2023 Disetuji pada 25 Mei 2023 Dipublikasikan pada 30 Mei 2023 Hal. 441-454

Kata Kunci:

SDGs; APK; Regresi Data Panel; FEM

DOI:

http://dx.doi.org/10.28926/briliant.v8i2.

Abstrak: Pendidikan bermutu menjadi tujuan ke-4 dari SDGs vaitu dengan menjamin kualitas pendidikan yang inklusif dan merata untuk semua masyarakat serta meningkatkan kesempatan belajar sepanjang hayat pada tahun 2030. Target yang diharapkan dari tujuan pendidikan bermutu ini salah satunya yaitu semua anak tanpa memandang gender dapat menyelesaikan pendidikan baik dasar maupun menengah tanpa dipungut biaya, setara, dan pada mengarah berkualitas, yang capaian pembelajaran yang relevan dan efektif . Indikator dalam pencapaian target dari pendidikan bermutu salah satunya yaitu APK (Angka Partisipasi Kasar) masing-masing jenjang pendidikan. Berdasarkan data BPS Angka Partisipasi Kasar (APK) jenjang SD (Sekolah Dasar) di Jawa Timur mencapai nilai 104,52. Nilai APK yang melebihi 100 mengartikan bahwa Provinsi Jawa Timur mampu menampung penduduk usia sekolah lebih dari target yang

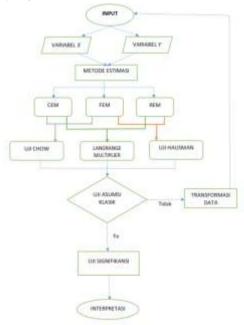
sesungguhnya. Penelitian ini dilakukan bertujuan untuk mengetahui model yang tepat serta pengaruh dari masing-masing factor yang memengaruhi APK. Hasil analisis yang didapat berupa model terbaik yaitu Fixed Effect Model (FEM) dengan persamaan regresi data panel sebagai :APK = 167.3815 - 0.6789917 X1 - 0.0353068 X2 +0.449908 X3 - 0.025980 X4 - 0.005991 X5 dan variabel pengeluaran perkapita dan rasio murid-guru berpengaruh positif dan signifikan terhadap angka partisipasi kasar (APK) jenjang SD di Jawa Timur.

PENDAHULUAN

Sustainable Development Goals (SDGs) atau dalam Bahasa Indonesia biasa disebut dengan Tujuan Pembangunan Berkelanjutan (TPB) merupakan kesepakatan oleh lebih dari 190 negara terhadap suatu rencana aksi global yang berisi 17 Tujuan dan 169 Target, yang diharapkan dapat dicapai pada tahun 2030 dengan harapan dapat mengakhiri kemiskinan, mengurangi kesenjangan dan melindungi lingkungan. SDGs diluncurkan oleh Perserikatan Bangsa-Bangsa (PBB) pada bulan September 2015 dengan masa berlaku sampai dengan 2030, sebagai agenda global yang melanjutkan upaya dan capaian agenda global sebelumnya yaitu MDGs yang sudah banyak merubah wajah dunia 15 tahun kearah yang lebih baik. SDGs berupaya meyakinkan bahwa tidak akan ada seorang pun yang terlewatkan atau "No-one Left Behind", maka dari itu SDGs memberlakukan prinsip universal, integrasi dan inklusif. Salah satu tujuan yang ingin dicapai dari SDGs ini yaitu pada bidang pendidikan, pendidikan bermutu menjadi tujuan ke-4 dari SDGs vaitu dengan menjamin kualitas pendidikan yang inklusif dan merata untuk semua masyarakat serta meningkatkan kesempatan belajar sepanjang hayat pada tahun 2030. Indikator dalam pencapaian target dari pendidikan bermutu salah satunya yaitu APK (Angka Partisipasi Kasar) masing-masing jenjang pendidikan.

Menurut Badan Pusat Statistik (BPS), APK didefinisikan sebagai perbandingan antara jumlah penduduk yang masih bersekolah di jenjang pendidikan tertentu (tanpa memandang usia penduduk tersebut) dengan jumlah penduduk yang memenuhi syarat resmi penduduk usia sekolah di jenjang pendidikan yang sama (BPS,n.d). APK menunjukkan berapa besar umumnya tingkat partisipasi penduduk pada suatu tingkat pendidikan, selain itu APK juga menunjukkan berapa besar kapasitas sistem pendidikan dapat menampung siswa dari kelompok usia sekolah tertentu. Berdasarkan data BPS pada tahun 2021 yang dimuat dalam website sirusa.bps.go.id, Angka Partisipasi Kasar (APK) jenjang sekolah dasar (SD) sederajat di Indonesia mencapai 106,20%. Nilai APK yang melebihi 100% ini karena populasi murid yang bersekolah pada suatu jenjang pendidikan tertentu mencakup anak di luar batas usia sekolah pada jenjang pendidikan tersebut seperti adanya pendaftaran siswa usia dini, pendaftaran siswa yang telat bersekolah, atau siswa dengan pengulangan kelas. Jawa Timur memiliki jumlah penduduk mencapai 40.878.789 jiwa pada tahun 2021 dengan jumlah penduduk yang sedang mengenyam pendidikan jenjang SD (Sekolah Dasar) sebanyak 3.790.235 jiwa (jatim.bps.go.id). Berdasarkan data BPS Angka Partisipasi Kasar (APK) jenjang SD (Sekolah Dasar) di Jawa Timur mencapai nilai 104,52.

Faktor-faktor yang dinilai dapat memengaruhi nilai APK diantaranya adalah pengeluaran per kapita, persentase penduduk miskin, rasio murid-guru, rasio muridsekolah dan anggaran pendidikan tanpa transfer daerah. Perlu adanya analisis untuk mengetahui faktor-faktor yang memengaruhi APK jenjang SD di Jawa Timur, agar dapat diketahui faktor yang memang sangat berpengaruh sehingga dapat diputuskan kebijakan yang tepat kedepannya. Analisis yang digunakan dalam penelitian ini yaitu analisis regresi data panel, karena data yang digunakan merupakan data lintas waktu (2017-2021) dan lintas daerah. Penelitian yang dilakukan oleh Rizkiana Prima dkk pada tahun 2021 mengenai pemodelan faktor yang memengaruhi APK SMA di Papua diperoleh hasil yaitu variabel pengeluaran per kapita, persentase penduduk miskin,transfer daerah bidang pendidikan, rasio murid-guru, dan rasio murid-sekolah berpengaruh signifikan terhadap APK SMA di Papua (Rizkiana, 2021). Hasil penelitian serupa yang dilakukan oleh Siti Habibah pada tahun 2019 menunjukkan variabel persentase Belanja Pemerintah di sektor pendidikan tinggi terhadap Produk Domestik Regional Bruto Provinsi, Rasio Dosen-Mahasiswa, jumlah Perguruan Tinggi, Produk Domestik Regional Bruto per kapita dan jumlah penduduk diduga secara bersama-sama (simultan) mempengaruhi tingkat APK PT (Habibah, 2019).


Analisis regresi data panel merupakan regresi yang menggunakan data panel. Data panel itu sendiri merupakan sebuah set data yang berisi data sampel individu pada periode waktu tertentu. Dengan kata lain, data panel merupakan gabungan antaradata lintas-waktu (time series data) dan data lintas-individu (cross-section data). Metode ini dipilih karena mrupakan gabungan data time series dan cross section mampu menyediakan data yang lebih banyak sehingga akan menghasilkan degree of freedom yang lebih besar. Selain itu, metode ini menggabungkan informasi dari data time series dan cross section dapat mengatasi masalah yang timbul ketika ada masalah penghilangan variabel (ommited-variabel).

Berdasarkan penjabaran diatas maka peneliti tertarik melakukan penelitian terhadap faktor-faktor yang memengaruhi APK jenjang SD di Jawa Timur. Tujuan dari penelitian ini yaitu mengetahui model yang tepat untuk menggambarkan faktor-faktor yang memengaruhi angka partisipasi kasar jenjang SD di Jawa Timur serta mengetahui pengaruh masing-masing faktor terhadap angka partisipasi kasar jenjang SD di Jawa Timur.

METODE

Penelitian dilakukan pada bulan Juli sampai Agustus 2022 di Dinas Pendidikan Kota Blitar melalui kegiatan PKL (Praktek Kerja Lapangan). Berdasarkan jenisnya, penelitian ini merupakan penelitian kuantitatif dengan menggunakan data sekunder yang diperoleh dari website resmi kemdikbud dan Badan Pusat Statisik (BPS) serta buku yang berjudul "Jawa Timur dalam Angka" yang diterbitkan padatahun 2017- 2022.

Variabel yang digunakan pada penelitian ini yaitu, variabel terikat (Y) yang berupa Angka Partisipasi Kasar (APK) jenjang SD, sedangkan variabel bebas yang digunakan ada 5 yaitu persentase penduduk miskin (X_1) , pengeluaran per kapita (X_2) , rasio murid-guru jenjang $SD(X_3)$, rasio murid-sekolah jenjang $SD(X_4)$, dan anggaran pendidikan tanpa transfer daerah (X_5) . Metode yang digunakan dalam penelitian ini yaitu analisis regresi data panel dengan tujuan memodelkan faktorfaktor yang memengaruhi APK di Jawa Timur dengan bantuan *software* Eviews 12 dan SPSS 24. Data yang digunakan merupakan data dari 38 kota dan kabupaten di Jawa Timur pada tahun 2017-2021.

Gambar 1. flowchart

HASIL DAN PEMBAHASAN Statistik Deskriptif

Statistik dekriptif adalah statistik yang menggambarkan fenomena atau data sebagaimana dalam bentuk tabel, grafik, rata-rata, frekuensi ataupun bentuk lainnya. Dalam statistik deskriptif, analisis dilakukan dalam bentuk tabel, grafik, kolom, perhitungan frekuensi, ukuran tendensi pusat (mean, median, modus), ukuran disperse (kisaran, standar deviasi, varian) dan lain sebagainya (Hendryadi, 2018).

Penelitian ini dilakukan bertujuan untuk mengetahui model faktor yang memengaruhi angka partisipasi kasar (APK) jenjang SD di Jawa Timur. Data yang digunakan merupakan data angka partisipasi kasar(APK) jenjang SD, persentase penduduk miskin, pengeluaran perkapita, rasio murid-guru, rasio murid-sekolah, dan anggaran pendidikan diluar transfer daerah sejak tahun 2017 hingga 2021 berdasarkan kota dan kabupaten yang ada di Jawa Timur. Data yang digunakan akan dilampirkan pada lampiran penelitian ini, kemudian akan diolah menggunakan software Eviews 12 untuk didapatkan statistik deskriptif seperti pada tabel 4.1.

		Tabel 4	1. Tabel D	eskripif	•	
	Υ	X1	X2	X3	X4	X5
Mean	102.9408	11.02626	1133881.	14.82526	159.5116	13.69626
Median	102.7950	10.41500	1098550.	15,00000	139.6000	13.06500
Maximum	110.9000	23.76000	1786200.	21.00000	371.6000	106,5400
Minimum	87.30000	3.810000	819200.0	7.760000	83.70000	0.000000
Std. Dev.	4.321770	4.527543	218074.7	3.405829	63.90578	7.808906
Skewness	-0.522929	0.648251	0.948989	-0.068389	1.206915	8.817443
Kurtosis	3.644375	3.067155	3.626034	1.858205	4.000278	106.5837
Jarque-Bera	11.94654	13.34298	31.62106	10.46903	54.04816	87404.58
Probability	0.002546	0.001267	0.000000	0.005329	0.000000	0.000000
Sum	19558.76	2094.990	2.15E+08	2816.800	30307.20	2602.289
Sum Sq. Dev.	3530.084	3874.244	8.99E+12	2192.338	771866.4	11525.03
Observations	190	190	190	190	190	190

Dengan: Y : APK

 X_1 : Persentase Penduduk Miskin

 X_2 : Pengeluaran perkapita

*X*₃: rasio murid-guru X_4 : rasio murid-sekolah

 X_5 : anggaran pendidikan tanpa transfer daerah

Berdasarkan table 4.1. tabel deskriptif diatas dapat diketahui bahwa jumlah data dari setiap variabel sebanyak 190 data. Jumlah tersebut diperoleh dari 38 kota/kabupaten yang ada di Jawa Timur pada kurun waktu 2017-2021. Variabel angka partisipasi kasar (APK) jenjang SD sebagai variabel Y memiliki nilai tertinggi sebesar 110.9% dan nilai terendah sebesar 87.3%, hal ini berarti besarnya nilai APK pada penelitian ini berkisar pada 87.3% sampai 110.9% dengan rata-rata 102.9% dan standar deviasi sebesar 4.3%. nilai tertinggi terdapat di Kabupaten Sampang pada tahun 2017 sedangkan nilai terendahnya ada pada Kota Probolinggo tahun 2019.

Variabel X_1 atau persentase penduduk miskin memiliki nilai tertinggi sebesar 23.76% terdapat di Kabupaten Sampang pada tahun 2021 dan nilai terendahnya sebesar 3.81% terdapat di Kota Batu pada tahun 2019. Hal ini menunjukkan bahwa besaran nilai persentase penduduk miskin pada penelitian ini berkisar pada 3.81% sampai 23.76% dengan rata-rata variabel X_1 ini sebesar 11.03% dan standar deviasi sebesar 4.5%.

Variabel X₂ atau pengeluaran perkapita nilai tertingginya yaitu sebesar 1786200 ribu dimiliki oleh Kota Surabaya pada tahun 2021 dan nilai terendahnya sebesar 819200 ribu dimiliki oleh Kabupaten Bangkalan pada tahun 2017. Dari nilai tertinggi dan terendahnya dapat dilihat bahwa variabel X_2 ini berkisar pada 819200 ribu sampai 1786200 ribu dengan rata-rata sebesar 1133881 ribu dan standar deviasi 218074,7 ribu.

Variabel X_3 atau rasio murid-guru memiliki rata-rata 14.82 dan standar deviasi 3,4. Nilai tertinggi berada pada Kota Surabaya tahun 2019 dan 2020 sebesar 21, sedangkan nilai terendahnya yaitu Kabupaten Sumenep 2017 sebesar 7,76. Nilai tersebut menunjukkan bahwa nilai rasio murid-guru pada penelitian ini berkisar pada 7,76 sampai 21. Variabel X_4 atau rasio murid-sekolah nilai tertingginya 371.6 juga pada Kota Surabaya tahun 2020-2021. Sedangkan nilai terendahnya ada pada Kabupaten Lamongan tahun 2021 sebesar 83.7, hal ini berarti data rasio muridsekolah berkisar pada 83.7 sampai 371.6 dengan rata-rata 159.5 dan standar deviasi 63.9.

Variabel X_5 atau anggaran pendidikan tanpa transfer daerah nilai tertingginya dimiliki oleh Kabupaten Sumenep tahun 2020 sebesar 106.54% dan nilai terendahnya sebesar 0% pada Kabupaten Madiun tahun 2019 dan Kabupaten Lumajang tahun 2017. Nilai tersebut menunjukkan bahwa anggaran pendidikan tanpa transfer daerah pada penelitian ini berkisar pada 0% sampai 106.54% dengan rata-rata 13.6% dan standar deviasi 7.8%.

Model Estimasi

Model estimasi data panel dilakukan dengan tiga pendekatan yaitu Common Effect Model(CEM), Fixed Effect Model(FEM), dan Random Effect Model(REM). Berikut disajikan hasil regresi ketiga model dengan bantuan software Eviews 12.

1. Common Effect Models (CEM)

Tabel 4.2. output CEM

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	96.31485	3.518362	27.37491	0.0000
X1	0.208275	0.099243	2.098642	0.0372
X2	-6.97E-08	2.40E-06	-0.029030	0.9769
X3	0.372642	0.150960	2.468474	0.0145
X4	-0.003405	0.010100	-0.337137	0.7364
X5	-0.041826	0.039548	-1.057600	0.2916
R-squared	0.068807	Mean depend	lent var	102.9408
Adjusted R-squared	0.043503	S.D. depende	ent var	4.321770
S.E. of regression	4.226719	Akaike info cr	iterion	5.751799
Sum squared resid	3287.188	Schwarz crite	rion	5.854336
Log likelihood	-540.4209	Hannan-Quin	n criter.	5.793335
F-statistic	2.719213	Durbin-Watso	on stat	0.602747
Prob(F-statistic)	0.021375			

Berdasarkan tabel 4.2 diatas diketahui nilai R – squared sebesar 0.0688 hal ini menunjukkan bahwa kemampuan variabel prediktor tidak kuat dalam menjelaskan variabel response jika menggunakan model CEM.

2. Fixed Effect Model (FEM)

Tabel 4.3. output FEM

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	167,3815	12.63072	13.25194	0.0000
X1	-0.679917	0.412754	-1.647272	0.1016
X2	-5.24E-05	7.71E-06	-6.796270	0.0000
X3	0.449908	0.193323	2.327237	0.0213
X4	-0.025980	0.019886	-1.306480	0.1934
X5	-0.005991	0.026375	-0.227159	0.8206
L.	Effects Sp	ecification		
Comment of the state of the sta	on marinda blan	es:		
Cross-section fixed (du	immy variables)		
R-squared	0.754607	Mean depend	lent var	102.9408
R-squared				27,770,703,73
R-squared Adjusted R-squared	0.754607	Mean depend	ent var	4.321770
R-squared Adjusted R-squared S.E. of regression	0.754607 0.684495	Mean depend S.D. depende	ent var iterion	102.9408 4.321770 4.807668 5.542521
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.754607 0.684495 2.427532	Mean depende S.D. depende Akaike info cr	ent var iterion rion	4.321770 4.807668 5.542521
	0.754607 0.684495 2.427532 866.2583	Mean depend S.D. depende Akaike info cr Schwarz crite	ent var iterion rion in criter.	4.321770 4.807668

Berdasarkan tabel 4.3 diatas diketahui nilai R – squared sebesar 0.7546 hal ini menunjukkan bahwa kemampuan variabel prediktor sangat kuat dalam menjelaskan variabel response jika menggunakan model FEM.

3. Random effect Model (REM)

Tabel 4.4. output REM

		<u> </u>		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	109.5626	5.636442	19.43826	0.0000
X1	-0.017917	0.171213	-0.104649	0.9168
X2	-1.27E-05	3.53E-06	-3.587484	0.0004
Х3	0.355454	0.156581	2.270099	0.0244
X4	0.019082	0.010690	1.785114	0.0759
X5	-0.026779	0.025722	-1.041085	0.2992
	Effects Sp	ecification	4000 CAC	Herry
	ASSAURACE SANS	BIGERIAN DE	S.D.	Rho
Cross-section random			3.447128	0.6685
ldiosyncratic random			2.427532	0.3315
	Weighted	Statistics		
R-squared	0.112507	Mean depend	dent var	30.92253
Adjusted R-squared	0.088391	S.D. depende	ent var	2.754750
S.E. of regression	2.630187	Sum squared	resid	1272.891
F-statistic	4.665130	Durbin-Watso	on stat	1.454435
Prob(F-statistic)	0.000493		30.11.00.110	1-11-11-11-11
	Unweighted	d Statistics		
R-squared	-0.072487	Mean depend	dent var	102.9408
Sum squared resid	3785.971	Durbin-Watso		0.488999

Berdasarkan tabel 4.4 diatas diketahui nilai *R – squared* sebesar 0.1125 pada output weighted, sedangkan pada output unweighted menunjukkan nilai sebesar -0.0724 hal ini menunjukkan bahwa kemampuan variabel prediktor tidak kuat dalam menjelaskan variabel response jika menggunakan model REM karena pada eviews model REM melihat kedua output tersebut.

Menentukan Model Terbaik

a. Uii Chow

Uji chow digunakan untuk menguji model terbaik antara Common Effect Model(CEM) dan Fixed Effect Model(FEM) dengan melihat nilai probabilitas dari Cross-section Chi-square. Berikut hasil dari uji chow menggunakan software Eviews 12:

Tabel 4.5. Hasil Uji *Chow*

Effects Test	Statistic	d.f.	Prob.
Cross-section F	11.103258	(37,147)	0.0000
Cross-section Chi-square	253.384892	37	0.0000

Berdasarkan tabel diatas diperoleh nilai statistic cross-section chi-square sebesar 253.384892 dengan nilai probabilitas sebesar 0.0000 sehingga nilai probabilitas kurang dari 0.05 (0.000 < 0.05), dengan begitu dari uji chow diperoleh model terbaik yaitu Fixed Effect Model (FEM).

b. Uji Hausman

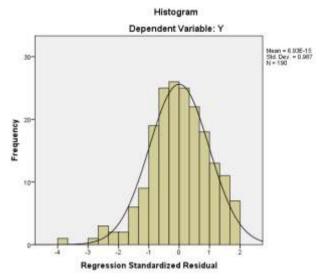
Uji hausman digunakan untuk memilih model terbaik antara Random Effect Model (REM) dan Fixed Effect Model(FEM) dengan melihat probabilitas dari Cross-section random.

Tabel 4.6. Hasil Uji Hausman

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	37.003610	5	0.0000

Berdasarkan tabel diatas dapat diketahui bahwa nilai probabilitas dari Crosssection random sebesar 0.0000, hal ini berarti nilai probalititas kurang dari 0.05 (0.0000 < 0.05). Maka secara statistik H_1 diterima dan H_0 ditolak, sehingga dalam uji hausman ini model yang dipilih adalah Fixed Effect Model(FEM).

c. Uji Langrange Multiplier


Pada uji chow dan uji hausman diperoleh model terbaik Fixed Effect Model(FEM), sehingga pada penelitian ini tidak diperlukan pengujian Langrange Multiplier dikarenakan uji Langrange Multiplier digunakan untuk menguji Common Effect Model(CEM) dan Random Effect Model(FEM).

Uji Asumsi Klasik

Verbeek(2000), Gujarati(2003), Wibisono(2005), Aulia(2004) dalam buku Ajija dkk(2011) menyimpulkan bahwa keunggulan lain pada data panel yaitu data panel memiliki implikasi tidak harus dilakukan pengujian asumsi klasik seperti normalitas dan autokorelasi.

a. Uji Normalitas

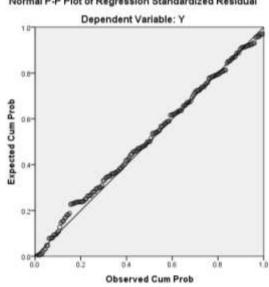
Uji normalitas data menguji apakah pada suatu model regresi, suau variabel independen dan variabel dependen ataupun keduanya mempunyai distribusi normal atau tidak. Uji normalitas pada data panel hanya digunakan jika jumlah observasi/sampel kurang dari 30, hal ini bertujuan unuk mengetahui apakah eror term mendekati distribusi normal. Apabila jumlah observasi/sampel lebih dari 30 maka tidak perlu dilakukan uji normalitas karena distribusi sampling eror term mendekati normal (Ajija dkk,2011). Penelitian ini menggunakan 190 sampel sehingga uji normalitas diabaikan. Pada penelitian ini disajikan histogram dari uji normalitas yang telah dilakukan menggunakan bantuan *Software* SPSS 24.

Gambar 2. Histogram hasil uji normalitas

Berdasarkan gambar 4.1 diatas diketahui bahwa data dalam penelitian ini berdistribusi normal ditandai dengan kurva lonceng yang seimbang dan berada ditengah.

b. Uji Multikolinearitas

Uji multikolinieritas bertujuan untuk mengetahui apakah dalam model penelitian ini terdapat korelasi antar varibel bebas(independen) atau tidak. Pengambilan keputusan dalam uji multikolinearitas ini berdasarkan nilai toleransinya. Jika nilai toleransi> 0.10 maka tidak terjadi multikolinearitas, sebaliknya jika nilai toleransinya < 0.10 maka terjadi multikolinearitas. Selain berdasarkan nilai toleransinya, pengambilan keputusan dalam uji multikolinearitas ini juga berdasarkan nilai VIF. Jika nilai VIF < 10 artinya tidak terjadi multikolinearitas, sebaliknya jika nilai VIF > 10 maka terjadi multikolinearitas. Berikut disajikan tabel *coefficients* dari *software* SPSS 24, tabel *coefficients* lebih lengkap akan dilampirkan pada lampiran 2 penelitian ini.


Tabel 4.7. Tabel Coefficients

C	oefficien	ts ^a					
Standardized Coefficients			С	orrelations		Collinearity	Statistics
Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
	27.375	.000					
.218	2.099	.037	.102	.153	.149	.468	2.136
004	029	.977	038	002	002	.345	2.898
.294	2.468	.014	.144	.179	.176	.358	2.797
050	337	.736	.043	025	024	.227	4.407
076	-1.058	.292	083	078	075	.991	1.009

Berdasarkan Tabel 4.7 diketahui bahwa semua nilai toleransi masing-masing variabel X_1, X_2, X_3, X_4 dan X_5 lebih dari 0.10, hal ini mengartikan bahwa tidak ada variabel yang mengalami multikolinearitas. Selain itu, dapat dilihat juga nilai VIF masing-masing variabel independen kurag dari 10 sehingga dapat diartikan bahwa tidak terjadi multikolinearitas. Dari kedua pedoman pengambilan keputusan tersebut dapat disimpulkan bahwa variabel independen dalam penelitian ini tidak terjadi multikolinearitas, sehingga regresi menggunakan data panel dapat dilanjutkan.

c. Uji Heteroskedastisitas

Tujuan dari uji heteroskedastisitas yaitu untuk mengetahui uji apakah ada perbedaan antara varian dari residu pada data. Dengan melihat grafik *scatterplot*, apabila terdapat pola tertentu(berkumpul) pada sumbu *y* maka terjadi heteroskedastisitas.

Normal P-P Plot of Regression Standardized Residual

Gambar 3. Scatterplot

Berdasarkan gambar 4.2 *scatterplot* diatas dapat dilihat tidak ada data yang berkelompok sehingga tidak membentuk pola tertentu pada sumbu *Y*. Disimpulkan dari *scatterplot* diatas bahwa data penelitian ini tidak mengalami heteroskedastisitas, maka penelitian ini dapat dilanjutkan.

d. Uji Autokorelasi

Uji autokorelasi bertujuan untuk mengtahui apakah ada keterkaitan antara variabel independent dalam satu kurun waktu penelitian. Autokorelasi rentan terjadi pada data time series dalam penelitian. Dasar pengambilan keputusan dalam uji autokorelasi ini yaitu:

- 1. Jika nilai Durbin Watson < DL atau > 4 DL, maka terdapat autokorelasi.
- 2. Jika nilai Durbin-Watson terletak antara DU dan 4-DU, maka tidak terjadi autokorelasi.
- 3. Jika nilai Durbin-Watson terletak antara DL dan DU atau di antara 4 DU dan 4 DL, maka tidak dapat disimpulkan.

Berikut disajikan *model summary* dari *software* SPSS 24, tabel lebih lengkap akan dilampirkan pada lampiran 2 penelitian ini.

Tabel 4.8. tabel *model summary*

N	lodel Summar	y ^b				
		Cha	ange Statisti	cs		
Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
4.22672	.069	2.719	5	184	.021	1.020

Berdasarkan tabel 4.8 diatas dapat diketahui nilai Dubin-Watson sebesar 1.020 pada level signifikansi 5%, $K = jumlah \ variabel = 5 \ dan \ N = jumlah \ data = 190$. Dilihat pada tabel Durbin-Watson dengan signifikansi 5% diperoleh $DL = 1.7089 \ dan \ DU = 1.8168$.

Tabel 4.9. tabel Durbin-Watson

	k-	E .	k*	2	k~	3	k ^a	4	k*	5
n	dL	dU	đL	dU	dL	dU	dL	dU	dL	ďU
184	1.7478	1.7697	1.7368	1.7807	1.7257	1.7920	1.7146	1.8033	1.7033	1.8148
185	1,7485	1.7702	1.7376	1.7813	1.7266	1.7924	1.7155	1.8037	1.7042	1.8151
186	1.7492	1.7708	1.7384	1.7818	1,7274	1,7929	1.7163	1.8041	1.7052	1.8155
187	1.7499	1.7714	1.7391	1.7823	1.7282	1.7933	1.7172	1.8045	1.7061	1.8158
188	1.7506	1,7720	1.7398	1.7828	1.7290	1.7938	1.7181	1.8049	1.7070	1.8161
189	1.7513	1.7725	1.7406	1.7833	1.7298	1.7942	1.7189	1.8053	1.7080	1.8165
190	1.7520	1.7731	1.7413	1.7838	1,7306	1.7947	1.7198	1.8057	1.7089	1.8168
191	1.7526	1.7737	1.7420	1.7843	1.7314	1.7951	1.7206	1.8061	1.7098	1.8171
192	1.7533	1.7742	1.7428	1.7848	1.7322	1.7956	1.7215	1.8064	1.7107	1.8174
193	1.7540	1.7748	1.7435	1.7853	1.7329	1.7960	1.7223	1.8068	1.7116	1.8178
194	1.7546	1.7753	1.7442	1.7858	1,7337	1,7965	1.7231	1.8072	1.7124	1.8181
195	1.7553	1.7759	1.7449	1.7863	1.7345	1.7969	1.7239	1.8076	1.7133	1.8184
196	1.7559	1,7764	1.7456	1.7868	1.7352	1.7973	1.7247	1.8079	1.7142	1.8187
197	1.7566	1.7769	1.7463	1.7873	1.7360	1.7977	1.7255	1.8083	1.7150	1.8190
198	1.7572	1.7775	1.7470	1.7878	1.7367	1.7982	1.7263	1.8087	1.7159	1.8193
199	1.7578	1.7780	1.7477	1.7882	1.7374	1.7986	1.7271	1.8091	1.7167	1.8196
200	1.7584	1.7785	1.7483	1.7887	1.7382	1.7990	1.7279	1.8094	1.7176	1.8199

Jadi nilai Durbin-Watson kurang dari DL dan DU (1.020 < 1.7089; 1.020 < 1.8168) maka dapat disimpulkan terdapat autokorelasi positif. Meskipun terjadi autokorelasi namun merupakan autokorelasi positif sehingga masih dapat ditoleransi dan dapat dilanjutkan ke tahap selanjutnya.

Uji Signifikansi

Berdasarkan uji *chow* dan uji *hausman*, model yang terpilih adalah *Fixed Effect Model*(FEM) untuk kemudian dilakukan uji signifikansi dari model terpilih.

Tabel 4.10. hasil uji signifikansi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	167.3815	12.63072	13.25194	0.0000
PERSENTASE_PENDMISKIN	-0.679917	0.412754	-1.647272	0.1016
PENGELUARAN_PERKAPITA	-5.24E-05	7.71E-06	-6.796270	0.0000
RASIO_MURID_GURU	0.449908	0.193323	2.327237	0.0213
RASIO_MURID_SEKOLAH	-0.025980	0.019886	-1.306480	0.1934
ANGGARAN_PENDIDIKAN	-0.005991	0.026375	-0.227159	0.8206
	F" . 0	: e e		
Cross-section fixed (dummy varia	Effects Sp	ecification		
	<u> </u>		lent var	102.9408
Cross-section fixed (dummy variated R-squared Adjusted R-squared	ables)	Mean dependence		102.9408 4.321770
R-squared	o.754607	Mean depend	ent var	
R-squared Adjusted R-squared	0.754607 0.684495	Mean depend	ent var iterion	4.321770
R-squared Adjusted R-squared S.E. of regression	0.754607 0.684495 2.427532	Mean depend S.D. depende Akaike info cri	ent var iterion rion	4.321770 4.807668
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.754607 0.684495 2.427532 866.2583	Mean depend S.D. depende Akaike info cri Schwarz crite	ent var iterion rion in criter.	4.321770 4.807668 5.542521

Dari tabel 4.10 tersebut dapat disusun persamaan regresi data panel sebagai berikut $APK = 167.3815 - 0.6789917 X_1 - 0.0353068 X_2$

$$+ 0.449908 X_3 - 0.025980 X_4 - 0.005991 X_5$$

Berdasarkan persamaan tersebut dapat diuraikan sebagai berikut :

- 1. Nilai konstanta bernilai positif yaitu 167.3815, hal ini menunjukkan bahwa apabila variabel X_1, X_2, X_3, X_4 dan X_5 konstan maka nilai APK sebesar 167.3815
- 2. Koefisien variabel X_1 atau persentase penduduk miskin bernilai negatif, hal ini menunjukkan bahwa apabila nilai variabel X_1 ini meningkat maka akan menurunkan nilai APK sebesar 0.6789917 dengan anggapan variabel bebas lainnya konstan.
- 3. Koefisien variabel X_2 atau pengeluaran perkapita bernilai negatif, hal ini menunjukkan bahwa apabila nilai variabel pengeluaran perkapita meningkat maka dapat menurunkan nilai APK sebesar 0.0353068 dengan anggapan variabel bebas lainnya konstan.
- 4. Koefisien variabel X_3 atau rasio murid-guru bernilai positif yaitu sebesar 0.449908, hal ini berarti apabila variabel X_3 mengalami peningkatan maka nilai APK akan naik sebesar 0.440008 dengan anggapan variabel bebas lainnya konstan.
- 5. Koefisien variabel X_4 atau rasio murid-sekolah bernilai negatif sebesar 0.025980, hal ini berarti apabila variabel X_4 naik maka dapat menurunkan nilai APK sebesar 0.025980 dengan anggapan variabel bebas lainnya konstan.
- 6. Koefisien variabel X_5 atau anggaran pendidikan tanpa transfer daerah bernilai negatif sebesar 0.005991, hal ini berarti apabila variabel X_5 naik maka dapat menurunkan nilai APK sebesar 0.005991 dengan anggapan variabel bebas lainnya konstan.

Dalam uji signifikansi ini terdapat uji signifikansi simultan (uji F), uji signifikansi parsial (uji t) dan koefisien determinasi (R^2).

a. Uji signifikansi simultan (uji F)

Uji signifikansi simultan (uji F) menunjukkan pengaruh variabel bebas secara bersama-sama terhadap variabel terikat (APK). Berdasarkan Tabel 4.10 diketahui nilai prob(F-statistik) sebesar 0.000000, hal ini berarti nilai prob(F-statistik) lebih kecil dari tingkat signifikansi (< 0.05). Sehingga H_0 ditolak dan H_1 diterima. Jadi variabel X_1, X_2, X_3, X_4 dan X_5 secara simultan berpengaruh signifikan terhadap nilai APK jenjang SD di Jawa Timur.

b. Uji signifikansi parsial (uji t)

Uji signifikansi parsial (uji t) memperlihatkan pengaruh masing-masing variabel bebas terhadap variabel terikat (APK). Nilai t-tabel diperoleh dari $K(jumlah\ variabel) = 5$ dan $N(jumlah\ sampel) = 190.DF = N - K = 185$. Jika dilihat dari titik persentase distribusi t dengan tingkat signifikansi 5% maka dihasilkan nilai t - tabel sebesar 1.65313.

Jika t - hitung < t - tabel maka H_0 diterima, artinya X tidak berpengaruh terhadap Y.

Jika t - hitung > t - tabel maka H_0 ditolak, artinya X berpengaruh terhadap Y.

Berdasarkan tabel distribusi t diketahui hasil uji signifikansi parsial dari masingmasing variabel bebas sebagai berikut :

- 1. Nilai t hitung dari variabel X_1 atau persentase penduduk miskin sebesar 1.647272 yang berarti lebih kecil dari t tabel (1.647272 < 1.65313) dengan nilai probability 0.1016 yang berarti lebih besar dari tingkat signifikansi (0.1016 > 0.05). maka dapat disimpulkan bahwa variabel persentase penduduk miskin tidak berpengaruh positif dan tidak signifikan terhadap nilai APK.
- 2. Nilai t hitung dari variabel X_2 atau pengeluaran perkapita sebesar 6.79627 yang berarti lebih besar dari t t abel (6.79627 > 1.65313) dengan nilai p robability 0.0000 yang berarti lebih besar dari tingkat signifikansi (0.0000 < 0.05). maka dapat disimpulkan bahwa variabel pengeluaran perkapita berpengaruh positif dan signifikan terhadap nilai APK.
- 3. Nilai t hitung dari variabel X_3 atau rasio murid-guru sebesar 2.327237 yang berarti lebih besar dari t tabel (2.327237 > 1.65313) dengan nilai probability 0.0213 yang berarti lebih besar dari tingkat signifikansi (0.0213 < 0.05). maka dapat disimpulkan bahwa variabel rasio murid-guru berpengaruh positif dan signifikan terhadap nilai APK.
- 4. Nilai t hitung dari variabel X_4 atau rasio murid-sekolah sebesar 1.306480 yang berarti lebih kecil dari t tabel (1.306480 < 1.65313) dengan nilai probability 0.1934 yang berarti lebih besar dari tingkat signifikansi (0.1934 > 0.05). maka dapat disimpulkan bahwa variabel rasio murid-sekolah tidak berpengaruh positif dan tidak signifikan terhadap nilai APK.
- 5. Nilai t hitung dari variabel X_5 atau anggaran pendidikan tanpa transfer daerah sebesar 0.227159 yang berarti lebih kecil dari t tabel (0.227159 < 1.65313) dengan nilai probability 0.8206 yang berarti lebih besar dari tingkat signifikansi (0.8206 > 0.05). maka dapat disimpulkan bahwa variabel anggaran pendidikan tanpa transfer daerah tidak berpengaruh positif dan tidak signifikan terhadap nilai APK.
- c. Koefisien Determinasi (R^2)

Analisis ini dilakukan untuk mengukur seberapa besar variabel bebas mampu menjelaskan perubahan pada variabel terikatnya, yang bertujuan untuk menghitung besarnya pengaruh variabel bebas terhadap variabel terikat dengan nilai koefisien determinasi antara 0 dan 1. Semakin tinggi nilai koefisien determinasinya maka semakin baik model yang dibuat. Berdasarkan tabel 4.10 dapat diketahui nilai adjusted R-squared sebesar 0.684495 artinya kemampuan variabel bebas dalam menjelaskan variabel terikat sebesar 68,45% sedangkan sisanya sebesar 31.55% dipengaruhi oleh faktor lain yang tidak terdapat pada model.

KESIMPULAN

Berdasarkan hasil dari penelitian yang telah dilakukan, maka dapat diambil kesimpulan yaitu:

1. Model terbaik yang digunakan dalam penelitian faktor yang memengaruhi Angka Partisipasi Kasar (APK) jenjang SD di Jawa Timur yaitu *Fixed Effect Model* (FEM) dengan persamaan regresi data panel sebagai berikut:

$$APK = 167.3815 - 0.6789917 X_1 - 0.0353068 X_2 + 0.449908 X_3 - 0.025980 X_4 - 0.005991 X_5$$

- 2. Variabel bebas (persentase penduduk miskin, pengeluaran perkapita, rasio murid-guru, rasio murid-sekolah dan anggaran pendidikan tanpa transfer daerah) secara simultan atau bersama-sama berpengaruh signifikan terhadap angka partisipasi kasar (APK) jenjang SD di Jawa Timur.
- 3. Secara parsial, variabel pengeluaran perkapita dan rasio murid-guru berpengaruh positif dan signifikan terhadap angka partisipasi kasar (APK) jenjang SD di Jawa Timur. Sedangkan variabel persentase penduduk miskin, rasio murid-sekolah dan anggaran pendidikan tanpa transfer daerah tidak berpengaruh positif dan tidak signifikan terhadap angka partisipasi kasar(APK) jenjang SD di Jawa Timur.
- 4. Variabel bebas X_1, X_2, X_3, X_4 dan X_5 mampu menjelaskan variabel terikat Y sebesar 68.45%, sedangkan sisanya sebesar 31.55% dipengaruhi oleh faktor lain yang tidak terdapat pada model.

SARAN

Penelitian ini hanya menggunakan variabel persentase penduduk miskin, pengeluaran perkapita, rasio murid-guru, rasio murid-sekolah dan anggaran pendidikan tanpa transfer daerah sebagai faktor yang memengaruhi angka partisipasi kasar jenjang SD di Jawa Timur. Metode yang digunakan yaitu regresi data panel dengan bantuan *software* Eviews 12 dan SPSS 24. Peneliti menyarankan pada penelitian selanjutnya dapat ditambahkan variabel lain sebagai faktor yang memengaruhi angka partisipasi kasar jenjang SD, selain itu peneliti juga menyarankan penggunaan metode dan software lain agar dapat menjadi pembanding metode mana yang lebih tepat digunakan dalam penelitian sejenis.

DAFTAR RUJUKAN

- Arifah, U., Rahmah, N., Sari, W. N., Murtono, Ismaya, E. A., Andriani, P. N., Setyowati, E., Yusanto, Y., Nursanti, M., Saputra, A., Morgan, H., Ilmiah, J., Dasar, P., Fathony, A. A., & Prianty, F. (2018). Anggaran Pendidikan dalam APBN. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, 1(1), 73–77. //ejournal.unibba.ac.id/index.php/akurat/article/view/77
- Arzelina, E. S., Handajani, S. S., & Zukhronah, E. (2019). Model Angka Partisipasi Sekolah di Provinsi JawaTengah Menggunakan Regresi Data Panel. The 9 Th University Research Colloqium 2019 Universitas Muhammadiyah Purworejo, 187–192. http://eproceedings.umpwr.ac.id/index.php/urecol9/article/view/872
- Bappenas, 2020; Caraka & Yasin, 2017; Dw et al., n.d.; Junaidi, 2013; Kementerian PPN/ Bappenas, 2020; Kementerian PPN/Bappenas, 2020; PPN/Bappenas, 2020
- Bappenas. (2020). Metadata Indikator: Pilar Pembangunan Lingkungan. In Kementerian PPN/Bappenas. https://sdgs.bappenas.go.id/wp-content/uploads/2021/02/Metadata-Pilar-Lingkungan-Edisi-II_REV3.pdf Caraka, R. E., & Yasin, H. (2017). Spatial Data Panel.

- Dw, T. D.-W., Reproduksi, C., & Membaca, C. (n.d.). Tabel Durbin- Watson (DW), $\alpha = 5\%$. 1–13.
- Endri, B. (n.d.). Model Regresi Panel Data dan Aplikasi Eviews. 2, 1–19.
- Habibah, S., Putra, Y. P., & Putra, Y. M. (2019). Faktor-Faktor Yang Mempengaruhi Angka Partisipasi Perguruan Tinggi Pada 32 Provinsi Di Indonesia Tahun 2013-2016. Jurnal Anggaran Dan Keuangan Negara Indonesia (AKURASI), 1(1). https://doi.org/10.33827/akurasi2019.vol1.iss1.art46
- International Council for Science. (2017). A Guide To SDG Interactions: From 33(7), J. https://www.modares.ac.ir/uploads/Agr.Oth.Lib.17.pdf
- Junaidi. (2013). Titik Persentase Distribusi t (df = 81 -120). 1-5. http://ledhyane.lecture.ub.ac.id/files/2013/04/tabel-t.pdf
- Kasar, P., Rahmadina, R. P., Ratna, M., & Nyoman, I. (2021). Pemodelan Faktor yang Memengaruhi Angka Spline Truncated. 10(1).
- Kementerian PPN/ Bappenas. (2020). Pilar Pembangunan Hukum & Tata Kelola. Kementerian PPN/Bappenas. (2020). Pilar Pembangunan Sosial.
- PPN/Bappenas, K. (2020). Pilar Pembangunan Ekonomi.
- Ajija, Shochrul Rohmatul, dkk. 2011. Cara Cerdas Menguasai Eviews. Jakarta: Salemba Empat
- Gujarati, D. 2003. Statistika Untuk Penelitian. Alih Bahasa. Sumarna Zain. Jakarta: Erlangga
- Ekananda, Mahyus. 2016. Analisis Ekonometrika Data Panel. Jakarta: Mitra Wacana Media.
- Sugiyono. (2012). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
- Agus Widarjono. 2009. Ekonometrika Pengantar dan Aplikasinya, Edisi Ketiga. Yogyakarta: Ekonesia
- Haryati, Titik dan Noor Rochman. 2012. Peningkatan Kualitas Pembelajaran Pendidikan Kewarganegaraan Melalui Praktik Belajar Kewarganegaraan (Project Citizen). Jurnal Ilmiah CIVIS Vol. II No. 2, Juli. Diakses pada 5 September 2022 dari http://download.portalgaruda.org/article.php.
- Yusuf Hadi Miarso. (2004). Menyemai Benih Teknologi Pendidikan. Jakarta: Prenoda Media.
- https://sirusa.bps.go.id/sirusa/index.php/indikator/565
- https://jatim.bps.go.id/indicator/12/375/1/jumlah-penduduk-provinsi-jawatimur.html
- https://npd.kemdikbud.go.id