Tindakan Preventif dan Korektif Sebagai Pengendalian Risiko Kinerja Biaya pada Proyek Konstruksi Pelabuhan

Citra Pradipta Hudoyo⁽¹⁾, Novi Andhi Setyo Purwono⁽²⁾

Program Studi Teknik Sipil, Universitas Wijayakusuma Purwokerto, Jl. Raya Beji Karangsalam No.25, Banyumas, Jawa Tengah, Indonesia

Email: ¹citrapradiptahudoyo@gmail.com, ²novi.andhiugm@gmail.com

Tersedia Online di

http://www.jurnal.unublitar.ac.id/index.php/briliant

Sejarah Artikel

Diterima pada 27 September 2022 Disetuji pada 27 Mei 2023 Dipublikasikan pada 30 Mei 2023 Hal. 455-464

Kata Kunci:

Manajemen Risiko; Proyek; Pelabuhan

DOI:

http://dx.doi.org/10.28926/briliant.v8i2. 1151 Abstrak: Industri konstruksi yang semakin marak memerlukan perhatian khusus terhadap kemungkinan terjadinya risiko. Terjadinya risiko buruk akan berdampak terhadap pencapaian kinerja waktu, biaya maupun kualitas pada proyek konstruksi. Tujuan dari penelitian ini adalah sebagai pedoman manajemen risiko pada proyek konstruksi pelabuhan laut, sehingga kontraktor dapat mengantisipasi risiko yang mempengaruhi kinerja biaya dan mengetahui respon risiko apa yang dapat dilakukan apabila resiko tersebut terjadi. Hasil akhir didapatkan 10 variabel risiko tertinggi, vaitu kesalahan prediksi gelombang tinggi, pemakaian material melebihi volume yang seharusnya, kualifikasi tenaga kerja tidak sesuai perencanaan, kekeliruan estimasi produktivitas peralatan, kesalahan menghitung volume pekerjaan, kondisi bawah air berbeda dengan asumsi tender, kesalahan prediksi kondisi lapangan, cuaca dan kejadian yang mungkin terjadi saat pelaksanaan

proyek, harga material yang dibeli melebihi estimasi pada perencanaan, pengadaan tenaga kerja pada pelaksanaan tidak sesuai dengan kebutuhan, dan kesalahan prediksi pasang surut air laut. Untuk mendapatkan respon risiko dari 10 variabel risiko tertinggi dilakukan wawancara dan validasi oleh pakar konstruksi pelabuhan, sehingga penelitian ini mendapatkan faktor penyebab risiko dam dampak risiko, kemudian dilakukan diskusi untuk mendapatkan tindakan preventif dan korektif.

PENDAHULUAN

Sekitar 90% dari perdagangan dalam dan luar negeri bergantung kepada transportasi laut sebagai sarana pendistribusian, hal ini menyebabkan pengembangan pelabuhan sangat penting dilakukan untuk menurunkan biaya logistik. Pada saat ini terdapat sekitar 1.241 pelabuhan yang ada di Indonesia yang bersifat komersial maupun non komersial. Berdasarkan data jumlah pulau yang ada di Indonesia yaitu ada sebanyak 18.110 pulau, dapat dikatakan bahwa 1 pelabuhan melayani 14 pulau dengan rata-rata luas 1.548 km2/pelabuhan. Kondisi seperti ini tentu masih belum seimbang dibandingkan dengan negara lain di Asia, seperti Jepang dengan 3,6 pulau/pelabuhan dan 340 km2/pelabuhan serta Filipina dengan 10,1 pulau/pelabuhan dan 460 km2/pelabuhan (Perencanaan Pembangunan Nasional / Kepala Bappenas, 2015). Pelabuhan juga berdampak pada ekonomi sekitarnya, memberikan keuntungan bagi investor dan eksternalitas positif pada perekonomian kawasan (Ho & Ho, 2006).

Penting akan adanya tranportasi laut akan mendorong Indonesia untuk membangun infrastruktur tranportasi laut berupa pelabuhan. Dalam perencanaan konstruksi pelabuhan diperlukan manajemen risiko agar tidak mengakibatkan adanya potensi kegagalan yang tinggi terkait kinerja biaya. Kurangnya identifikasi risiko pada proyek saat perencanaan dapat berakibat berkurangnya kinerja biaya dan waktu (Gitau, 2015). Meskipun pembangunan pelabuhan sangat dibutuhkan, namun pada masa konstruksi pelabuhan terdapat beberapa risiko buruk yang mungkin bisa saja terjadi, seperti risiko akibat alam / cuaca, penyelesaian tidak tepat waktu, denda akibat keterlambatan, terjadi kenaikan besi, terjadi kenaikan pasir dan terjadi kenaikan semen (Sukaarta et al., 2012).

Menurut Pratama (2014),risiko pada pelaksanaan konstruksi dermaga/pelabuhan dapat dikategorikan menjadi 9(sembilan) kategori, yaitu risiko sosial, keselamatan, manusia, teknis, proyek, alam, keuangan, ekonomi, perencanaan, lingkungan dan politik. Berdasarkan hasil penelitian lainya, risiko pada proyek konstruksi pelabuhan dipengaruhi oleh faktor eksternal non teknis (22,807%), proyek teknis (21,053%), eksternal teknis (21,053%), internal teknis (18,421%), internal non teknis (8,772%) dan proyek non teknis (7,895%) (Haidar et al., 2022).

Pada proyek pelaksanaan proyek perpanjangan log dock di pelabuhan Tanjung Emas Semarang telah dilakukan penelitian dengan hasil menunjukkan lima kategori berisiko tinggi menurut persepsi penyedia layanan yang paling berpengaruh terhadap keterlambatan proyek. Risiko ini termasuk fenomena eksternal yang tidak dapat diprediksi, seperti elevasi pasang surut yang melebihi rencana, yang mengakibatkan perubahan dalam desain dan metode implementasi (Ismiyati et al., 2019).

Tam & Shen (2012) melakukan survei dan interview mengenai risiko di proyek kelautan, berdasarkan penelitian tersebut didapat bahwa risiko yang paling umum terjadi adalah kondisi bawah laut yang berbeda dengan asumsi tender. Sedangkan risiko yang memiliki dampak besar adalah tidak tersedianya material, mesin peralatan, dan tenaga kerja.

Beberapa penelitian terdahulu telah mendapatkan kesimpulan berupa faktorfaktor risiko apa saja yang berdampak pada pelaksanaan proyek konstruksi pelabuhan, namun masih belum membahas tindakan preventif dan korektif, terutama di negara Indonesia. Oleh karena itu, penelitian ini bertujuan untuk menemukan tindakan preventif dan korektif yang dapat dilakukan sebagai respon terhadap risiko yang mungkin akan terjadi.

METODE

Dalam menentukan variabel risiko, penelitian ini menggunakan studi literatur dan risiko yang dicari adalah yang dapat memperngaruhi kinerja biaya proyek konstruksi pelabuhan laut. Kemudian dilakukan pendekatan kualitatif untuk mendapatkan peringkat risiko tertinggi dengan melakukan penyebaran kuesioner kepada para kontraktor yang memiliki pengalaman pada proyek konstruksi pelabuhan laut. Hasil kuesioner yang telah didapatkan kemudian dilakukan tes validitas dan reliabilitas dengan menggunakan aplikasi SPSS. Hasil peringkat risiko yang didapatkan dibawa ke para pakar dengan pengalaman lebih dari 10 tahun

dalam proyek konstruksi pelabuhan laut untuk divalidasi dan dilakukan wawancara untuk mendapatkan respon risiko terhadap variabel tersebut.

HASIL DAN PEMBAHASAN

Risiko Proyek Konstruksi Pelabuhan

Berdasarkan dari beberapa literatur dan proses wawancara telah ditemukan beberapa faktor risiko yang dapat mempengaruhi kinerja biaya pada proyek konstruksi pelabuhan seperti berikut ini:

Tabel 1 Variabel Risiko Yang Mempengaruhi Kineria Riaya

	l. Variat	pel Risiko Yang Mempengaruhi Kinerja Biaya				
Kategori Risiko		Variabel Risiko				
	X1	Perubahan scope pekerjaan pada proyek				
	X2	Hasil pekerjaan tidak sesuai spesifikasi owner				
Paket Pekerjaan	X3	Kesalahan menghitung volume pekerjaan				
raket rekerjaan	X4	Perubahan desain				
	X5	Produktivitas subkontraktor tidak sesuai rencana				
	X6	Perencanaan pelabuhan yang kurang baik				
A1	X7	Metode yang digunakan tidak berdasarkan kondisi lapangan				
Alternatif Metode / Desain	X8	Metode konstruksi yang diaplikasikan tidak sesuai				
Desam		perencanaan				
	X9	Urutan pelaksanaan tidak sesuai prosedur				
Aktivitas	X10	Adanya aktivitas-aktivitas yang tidak dimasukan ke anggaran				
		biaya				
	X11	Harga material yang dibeli melebihi estimasi pada				
		perencanaan				
g 1 5	X12	Kebutuhan material saat pelaksanaan melebihi estimasi				
Sumber Daya		perencanaan				
Material	X13	Pemasangan material tidak terjadwal				
	X14	Material hilang akibat pencurian				
	X15	Pemakaian material melebihi volume yang seharusnya				
	X16	Pengadaan tenaga kerja pada pelaksanaan tidak sesuai dengan				
		kebutuhan				
a 1 5	X17	Tenaga kerja tidak terjadwal				
Sumber Daya Manusia	X18	Tenaga belum siap menggunakan metode baru				
Manusia	X19	Hilangnya jam kerja akibat kecelakaan kerja				
	X20	Penjadwalan waktu bekerja melebihi perencanaan				
	X21	Kualifikasi tenaga kerja tidak sesuai perencanaan				
	X22	Pemakaian peralatan tidak terjadwal				
	X23	Peralatan yang digunakan tidak sesuai dengan perencanaan				
Sumber Daya	X24	Produktivitas alat yang direncanakan tidak sesuai kebutuhan				
Peralatan	X25	Spesifikasi peralatan tidak sesuai perencanaan				
	X26	Jumlah peralatan yang direncanakan tidak sesuai kebutuhan				
	X27	Harga beli/sewa alat lebih mahal dari estimasi perencanaan				
	X28	Kesalahan prediksi kondisi lapangan, cuaca dan kejadian yang				
		akan mungkin terjadi saat pelaksanaan proyek				
Faktor Lingkungan	X29	Terjadi hal di luar dugaan saat pelaksanaan konstruksi proyek				
		seperti force majeure, bencana alam, politik dan lain-lain				
	X30	Kesalahan prediksi tinggi gelombang				

X31	Kondisi bawah air berbeda dengan asumsi tender
X32	Gangguan dari masyarakat sekitar
X33	Kesalahan prediksi pasang surut air laut
X34	Status lahan tidak jelas / terjadi sengketa lahan
X35	Terjadi abrasi
X36	Belum tersedianya lahan akses masuk menuju proyek
	pelabuhan
X37	Terjadi pendangkalan alur pelayaran yang menyulitkan
	operasional kapal

Survei Responden

Pada tahap ini dilakukan pengumpulan data dengan menyebarkan kuesioner yang telah divalidasi pada tahap awal dan telah dilakukan eksperimen melalui pilot survey. Populasi responden yang dibutuhkan dalam penelitian adalah praktisi yang memiliki pengalaman dalam proyek pelabuhan. Ada 30 kuesioner yang tersebar, kemudian ada sebanyak 15 kuesioner yang kembali dan semua kuesioner dapat digunakan. Berikut adalah profil responden penelitian ini:

Tabe	12	Data	Respo	nden
Ianc	<i>–</i>	. Data	INCSDO	nuci

	Tabel 2. Data Respon	ucii
No	Deskripsi	Total
1	Posisi	
	 Project Manager 	2
	 Chief Engineer 	2
	 Engineer Sipil 	5
	 Quality Control 	2
	 Staff Adkon 	1
	 Pelaksana 	3
2	Pengalaman Kerja	
	\circ < = 5 Tahun	6
	o 6 - 10 Tahun	5
	 11 - 15 Tahun 	3
	\circ > 16 tahun	1
3	Pendidikan	
	o D3	2
	o S1	12
	o S2	1

Tes Validitas dan Reabilitas

Uji validitas merupakan uji ketelitian suatu alat ukur, yang bertujuan untuk menilai apakah alat ukur tersebut cocok untuk mengukur hasil kuesioner yang telah dibagikan kepada responden. Uji validitas dalam penelitian ini menggunakan bantuan aplikasi SPSS versi 25.

Pada penelitian ini, r tabel dilihat pada kepercayaan 95% atau signifikansi 5% untuk uji dua sisi dengan total responden berjumlah 15 orang, sehingga degree of freedom (df) = N - 2 = 13. Maka diperoleh r tabel = 0.514. Sedangkan untuk pengujian reliabilitas penelitian ini menggunakan metode cronbach's alpha. Persyaratan untuk uji reabilitas dengan metode cronbach's alpha yaitu:

- Nilai Cronbach's Alpha ≤ 0.6 menyatakan jika kuesioner penelitian tidak reliabel.
- Nilai Cronbach's Alpha ≥ 0.6 menyatakan jika kuesioner penelitian reliabel.

Tabel 3. Statistik Responden untuk Uji Reliabilitas

Case Processing Summary						
	_	N	%			
Cases	Valid	15	100.0			
	Excluded ^a	0	.0			
	Total	15	100.0			

Berdasarkan hasil pengujian statistik responden untuk uji reliabilitas, didapatkan nilai N adalah 15, oleh karena itu dapat dikatakan bahwa hasil kuesioner responden yang dianalisa berjumlah 15 dan sudah valid 100%.

Tabel 4 Statistik Reliabilitas

10001 11 2 1011211	1 11011001111005				
Reliability Statistics					
Cronbach's Alpha	N of Items				
0.726	37				

Berdasarkan statistik reliabilitas, didapatkan nilai cronbach's alpha sebesar 0.726 dengan total jumlah variabel penelitian sebanyak 37 variabel. Oleh karena itu dapat disimpulkan bahwa kuesioner yang telah dilaksanakan adalah reliabel karena nilai *cronbach's alpha* \geq 0.6 yaitu sebesar 0.726.

Analisis Tingkat Risiko

Pada tahap ini dilakukan analisis tingkat risiko, data hasil pengisian kuesioner oleh responden terhadap rating frekuensi dan dampak pada masing-masing variabel risiko. Penelitian ini menggunakan proses *Perform Qualitative Risk Analysis* pada PMBOK 6th Edition sebagai panduan.

Dengan menilai kemungkinan kejadian, dampak dan karakteristik risiko proyek individu, memprioritaskan setiap risiko proyek untuk analisis dan tindakan lebih lanjut. Manfaat utama dari proses ini adalah untuk mengetahui tingkat risikonya, kemudian pemilik risiko atau penanggung jawab akan menentukan tingkat risiko untuk merencanakan tindakan respons risiko yang tepat dan memastikan bahwa tindakan respons telah dilaksanakan (Project Management Institute, 2017). Berikut adalah nilai skala frekuensi dan dampak untuk variabel risiko (Elsye et al., 2018):

Tabel 5. Nilai Skala Frekuensi

Kriteria Frekuensi	SJ	J	KK	S	SS
Probabilitas	0,1	0,3	0,5	0,7	0,9

Berdasarkan tabel di atas, tingkat frekuensi menggunakan 5 kriteria dengan ketentuan SJ = sangat jarang, J = jarang, KK = kadang-kadang, S = sering, dan SS= sangat sering

Tabel 6. Nilai Skala Dampak

Kriteria Dampak	SR	R	S	Т	ST
Dampak	0,05	0,10	0,20	0,40	0,80

Berdasarkan tabel di atas, tingkat dampak menggunakan 5 kriteria dengan ketentuan SR = sangat rendah, R = rendah, S = sedang, T = tinggi, dan ST = sangattinggi. Selanjutnya dilakukan penentuan nilai FR (Faktor Risiko) dengan mengalikan nilai rata-rata frekuensi dengan nilai rata-rata dampak pada masingmasing variabel risiko. Dengan dilakukannya penilaian FR, maka akan didapat peringkat risiko pada proyek konstrusi pelabuhan yang berpengaruh pada kinerja biaya.

Tabel 7 Nilai Skala Frekuensi

	Tuber 7. I (Ital Bitara I Teltaelisi						
Probability			Treats				
0.90	0.05	0.09	0.18	0.36	0.72		
0.70	0.04	0.07	0.14	0.28	0.56		
0.50	0.03	0.05	0.10	0.20	0.40		
0.30	0.02	0.03	0.06	0.12	0.24		
0.10	0.01	0.01	0.02	0.04	0.08		
	0.05	0.10	0.20	0.40	0.80		

Very Low Low Moderate High Very high

Berdasarkan tabel *matrix* di atas, didapat kisaran nilai untuk dapat menentukan peringkat risiko:

> Risiko rendah : 0.01 - 0.05 a) b) Risiko sedang: 0.06 - 0.14 c) Risiko tinggi : 0.18 - 0.72

Identifikasi risiko pada proyek konstruksi pelabuhan yang dapat memengaruhi kinerja biaya yang diperoleh dari studi literatur, kemudian klarifikasi dan validasi oleh para pakar. Setelah skala probabilitas dan dampak diperoleh, skor risiko dapat dihitung dengan:

$$R = P \times I$$

Dengan R = faktor risiko, P = probabilitas dari suatu risiko, I = impact atau dampak yang dihasilkan risiko. Menggunakan rumus tersebut, dilakukan perhitungan terhadap hasil survei yang sebelumnya telah disebarkan kepada para responden. Dari hasil perhitungan tersebut dapat ditentukan level risikonya dan dapat diurutkan peringkat risikonya.

Tabel 8. Perhitungan Peringkat Risiko

Variabel	Rata-Rata Nilai	Rata- Rata Nilai	Nilai Risiko	<i>Level</i> Risiko	Peringkat Risiko
	Probabilitas	Dampak			
	WBS L	evel 4 - Pak	ket Pekerj	aan	
X1	0.440	0.307	0.135	Sedang	20
X2	0.373	0.373	0.139	Sedang	11
X3	0.547	0.293	0.160	Tinggi	5
X4	0.320	0.307	0.098	Sedang	30
X5	0.640	0.160	0.102	Sedang	28
X6	0.427	0.320	0.137	Sedang	18
	Alter	natif Meto	de / Desai	n	
X7	0.453	0.307	0.139	Sedang	14
X8	0.400	0.347	0.139	Sedang	15
	WB	S Level 5 -	Aktivitas		
X9	0.253	0.130	0.033	Rendah	37
X10	0.253	0.207	0.052	Sedang	34
	WBS Leve	l 6 - Sumbe	er Daya M	[aterial	
X11	0.453	0.327	0.148	Tinggi	8
X12	0.413	0.333	0.138	Sedang	16
X13	0.293	0.220	0.065	Sedang	32
X14	0.240	0.180	0.043	Rendah	36

-		D 4			
	Rata-Rata	Rata-	NT!1 - !	71	D
Variabel	Nilai	Rata	Nilai D: :	Level	Peringkat
	Probabilitas	Nilai	Risiko	Risiko	Risiko
3715	0.522	Dampak	0.105	TD: :	2
X15	0.533	0.347	0.185	Tinggi	2
	WBS Level 6			<u> </u>	
X16	0.427	0.347	0.148	Tinggi	9
X17	0.293	0.213	0.063	Sedang	33
X18	0.240	0.207	0.050	Rendah	35
X19	0.360	0.293	0.106	Sedang	27
X20	0.520	0.233	0.121	Sedang	25
X21	0.507	0.333	0.169	Tinggi	3
	WBS Level	6 - Sumber	Daya Pe	ralatan	
X22	0.307	0.213	0.065	Sedang	31
X23	0.413	0.320	0.132	Sedang	22
X24	0.440	0.373	0.164	Tinggi	4
X25	0.467	0.293	0.137	Sedang	17
X26	0.387	0.360	0.139	Sedang	12
X27	0.427	0.287	0.122	Sedang	24
	F	aktor Lingl	kungan		
X28	0.467	0.320	0.149	Tinggi	7
X29	0.307	0.440	0.135	Sedang	19
X30	0.427	0.440	0.188	Tinggi	1
X31	0.453	0.333	0.151	Tinggi	6
X32	0.453	0.307	0.139	Sedang	13
X33	0.520	0.280	0.146	Tinggi	10
X34	0.373	0.267	0.100	Sedang	29
X35	0.467	0.280	0.131	Sedang	23
X36	0.413	0.287	0.118	Sedang	26
X37	0.453	0.293	0.133	Sedang	21

Analisis Tingkat Risiko

Tahap ini dilakukan validasi mengenai variabel risiko tertinggi oleh para pakar yang telah memiliki pengalaman 10 tahun di proyek konstruksi pelabuhan laut. Dan dilakukan wawancara mengenai analisis dampak dan penyebab risiko, kemudian ditentukan tindakan preventif dan korektifnya.

Risiko tertinggi di peringkat pertama adalah variabel X30, yaitu kesalahan prediksi tinggi gelombang. Penyebabnya adalah angin kencang / badai dan tidak dilakukannya prediksi tinggi gelombang air laut, tindakan preventif yang dapat dilakukan adalah melakukan prediksi gelombang air laut dan melakukan prediksi cuaca dengan mencari data klimatologi dari BMKG. Adapun dampak yang terjadi akibat risiko ini adalah pelaksanaan pekerjaan menjadi tertunda, kerusakan konstruksi dan kecelakaan tenaga kerja. Untuk mengurangi dampak tersebut, maka dilakukan tindakan korektif berupa menambah waktu lembur pengganti idle pekerjaan, melakukan perbaikan konstruksi dan melakukan pengobatan dan pemberian santunan kepada korban.

Peringkat risiko kedua adalah variabel X15, yaitu pemakaian material melebihi volume yang seharusnya. Risiko ini memiliki dampak terjadinya cost overrun dan terdapat waste material yang cukup banyak. Untuk mengatasi dampak tersebut dapat dilakukan tindakan korektif berupa melakukan pengawasan penggunaan material dan evaluasi maupun koreksi material handling. Beberapa penyebabnya yaitu, adanya kesalahan perhitungan estimasi, kurangnya pengawasan dan kesalahan handling material. Tindakan preventif untuk mengatasi penyebab tersebut adalah, melakukan re-check, melakukan perbaikan sistem pengawasan, mempekerjakan logistik yang kompeten dan membuat prosedur material handling.

Peringkat risiko ketiga adalah variabel X21, yaitu kualifikasi tenaga kerja tidak sesuai perencanaan. Penyebab risiko tersebut adalah adanya kesalahan rekrutmen tenaga kerja dan tenaga HRD yang kurang kompeten. Risiko ini dapat menyebab target produktivitas tidak tercapai, maka perlu dilakukan tindakan korektif berupa pelatihan tenaga kerja dan mengadakan / menambah jam kerja lembur. Untuk mencegahnya perlu dilakukan tindakan preventif seperti menggunakan HRP yang kompeten dan melakukan seleksi rekrutmen lebih ketat dan teliti.

Peringkat risiko keempat adalah variabel X24, yaitu kekeliruan estimasi produktivitas peralatan. Penyebab risiko tersebut adalah kesalahan perhitungan estimasi, adanya estimator yang kurang kompeten dan kesalahan metode kerja. Risiko ini dapat memberikan dampak target produktivitas tidak tercapai. Tindakan preventif yang dapat dilakukan adalah melakukan recheck, mempekerjakan tenaga estimator yang kompeten, dan review pelaksanaan metode kerja. Tindakan korektif yang dapat dilakukan adalah mengadakan / menambah jam lembur dan pengadaan tambahan / penggantian alat.

Peringkat risiko kelima adalah variabel X3, yaitu kesalahan menghitung volume pekerjaan. Penyebab risiko tersebut didapatkan adanya kesalahan perhitungan estimasi, kesalahan membaca gambar, dan kesalahan metode perhitungan. Risiko ini dapat mengakibatkan kesalahan dalam pembelian volume material, cost overrun, dan kekurangan material. Tindakan preventif yang dapat dilakukan adalah melakukan recheck, membuat panduan perhitungan estimasi, mempekerjakan estimator yang kompeten. Tindakan korektif yang dapat dilakukan adalah retur material, transfer material ke proyek lain, melakukan review dan efisiensi sisa pekerjaan dan estimasi ulang.

Peringkat risiko keenam adalah X31, yaitu kesalahan prediksi kondisi lapangan, cuaca dan kejadian yang akan mungkin terjadi saat pelaksanaan proyek. Penyebab yang dapat mengakibatkan risiko ini adalah kondisi bawah air yang sulit diprediksi dan cepat berubah. Risiko ini dapat berdampak terjadinya cost overrun dan pelaksanaan pekerjaan yang tertunda. Tindakan preventif yang dapat dilakukan adalah melakukan pengecekan ulang sebelum dimulai pelaksanaan. Tindakan korektif yang dapat dilakukan adalah permintaan tambahan waktu ke pihak owner, mengadakan / menambah waktu lembur dan klaim ke pihak owner atas perbedaan kondisi proyek pada tender dengan lapangan.

Peringkat risiko ketujuh adalah X28, yaitu Kesalahan prediksi kondisi lapangan, cuaca dan kejadian yang akan mungkin terjadi saat pelaksanaan proyek. Penyebab risiko ini adalah tidak mempunyai data pasang surut air laut. Risiko tersebut dapat mengakibatkan pelaksanaan pekerjaan tertunda. Tindakan preventif yang dapat dilakukan adalah mencari data pasang surut air laut. Tindakan korektif yang dapat dilakukan yaitu mengadakan / menambah jam lembur.

Peringkat risiko kedelapan adalah X11, harga material yang dibeli melebihi estimasi pada perencanaan. Penyebab terjadinya risiko ini adalah tidak dilakukannya survei harga, kelangkaan material dan strategi penentuan supplier yang kurang baik. Risiko ini dapat berdampak terjadinya cost overrun pada proyek. Tindakan preventif yang dapat dilakukan yaitu, melakukan survei harga, merencanakan alternatif material dan melakukan pemilihan supplier lebih teliti. Tindakan korektif yang dapat dilakukan adalah melakukan review dan efisiensi sisa pekerjaan, mengganti material yang setara dan lebih murah dengan persetujuan owner, mengganti material yang setara, namun lebih murah dengan persetujuan owner dan melakukan inovasi.

Peringkat risiko kesembilan adalah X16, yaitu pengadaan tenaga kerja pada pelaksanaan tidak sesuai dengan kebutuhan. Penyebab risiko kesalahan estimasi produktivitas tenaga kerja, HRD yang tidak kompeten, ketersediaan tenaga terbatas dan kesehatan tenaga kerja yang kurat baik. Risiko tersebut dapat mengakibatkan target produktivitas tidak tercapai dan pelaksanaan pekerjaan tertunda. Tindakan preventif yang dapat dilakukan adalah dilakukan pelatihan terhadap penguasaan spesifikasi, lokasi proyek, gambar dan schedule bagi estimator, menggunakan HRD yang kompeten, menggunakan subkontraktor dan pemeriksaan kesehatan rutin. Tindakan korektif yang dapat dilakukan adalah pelatihan tenaga kerja, mengadakan jam lembur dan menambah jumlah tenaga sesuai kebutuhan.

Peringkat risiko kesepuluh adalah X33, yaitu kesalahan prediksi pasang surut air laut. Penyebabnya adalah tidak mempunyai data pasang surut air laut. Risiko ini akan mengakibatkan pelaksanaan pekerjaan tertunda. Tindakan preventif yang dapat dilakukan adalah mencari data pasang surut air laut. Tindakan korektif yang dapat dilakukan yaitu mengadakan jam lembur, menambah pekerja dan peralatan.

KESIMPULAN

Berdasarkan hasil survei dan validasi oleh pakar, dari 37 variabel risiko didapatkan 10 peringkat risiko tertinggi yang berdampak pada kinerja biaya proyek pelabuhan. Risiko-risiko tersebut adalah kesalahan prediksi gelombang tinggi, pemakaian material melebihi volume yang seharusnya, kualifikasi tenaga kerja tidak sesuai perencanaan, kekeliruan estimasi produktivitas peralatan, kesalahan menghitung volume pekerjaan, kondisi bawah air berbeda dengan asumsi tender, kesalahan prediksi kondisi lapangan, cuaca dan kejadian yang mungkin terjadi saat pelaksanaan proyek, harga material yang dibeli melebihi estimasi pada perencanaan, pengadaan tenaga kerja pada pelaksanaan tidak sesuai dengan kebutuhan, dan kesalahan prediksi pasang surut air laut.

Hasil tersebut digunakan untuk menemukan penyebab dan dampaknya. Dari data penyebab risiko kemudian ditentukan tindakan preventif untuk dapat mengurangi probabilitas kemungkinan risiko terjadi, sedangkan dari data dampak digunakan untuk mencari tindakan korektif untuk mengurangi dampak yang akan timbul apabila risiko terjadi. Hasil tindakan preventif dan korektif dapat dijadikan pedoman manajemen risiko untuk proyek konstruksi pelabuhan laut.

SARAN

Berdasarkan hasil penelitian, penulis memberikan beberapa saran yang mungkin akan bermanfaat bagi perusahaan jasa konstruksi terutama pada proyek kontruksi pelabuhan. Saran yang penulis berikan adalah: mewaspadai risiko yang mungkin terjadi saat pelaksanaan proyek konstruksi pelabuhan dan membuat dokumen manajemen risiko yang berisikan mengenai risiko yang terdiri dari

penyebab dan dampak risiko, serta tercantum tindakan preventif dan korektifnya. Peneliti juga dapat mengembangkan tindakan preventif dan korektif berdasarkan kinerja lainnya seperti kinerja waktu dan kualitas.

DAFTAR RUJUKAN

- Elsye, V., Latief, Y., & Sagita, L. (2018). Development of Work Breakdown Structure (WBS) Standard for Producing the Risk Based Structural Work Safety Plan Of Building. MATEC Web of Conferences, 147, 06003. https://doi.org/10.1051/MATECCONF/201814706003
- Gitau, L. mwangi. (2015). The Effects of Risk Management at Project Planning Phase on Performance of Construction Project in Rwanda. Jomo Kenyatta *University of Agriculture And Technology.*
- Haidar, H., Monalisa, Pratama, A. A., Siswantoro, F., & Purba, H. H. (2022). Analisis Manajemen Risiko pada Proyek Konstruksi Pelabuhan: Kajian Literatur Sistematik. Journal of Industrial and Engineering System, 3(1), 14-31. https://doi.org/10.31599/JIES.V3I1.851
- Ho, M. W., & Ho, K. H. (David). (2006). Risk Management in Large Physical Infrastructure Investments: The Context of Seaport Infrastructure Development and Investment. Maritime Economics & Logistics, 8(2), 140-168. https://doi.org/10.1057/palgrave.mel.9100153
- Ismiyati, I., Sanggawuri, R., & Handajani, M. (2019). Penerapan Manajemen Resiko pada Pembangunan Proyek Perpanjangan Dermaga log (Studi Kasus: Pelabuhan Dalam Tanjung Emas Semarang). MEDIA KOMUNIKASI TEKNIK SIPIL, 25(2), 209-220. https://doi.org/10.14710/MKTS.V25I2.19467
- Perencanaan Pembangunan Nasional / Kepala Bappenas. (2015). Konsep Tol Laut Dan Implementasi 2015 - 2019.
- Pratama, I. A. (2014). Identifikasi Risiko Pada Pelaksanaan Proyek Pembangunan Dermaga/Pelabuhan di Nusa Penida. Jurnal Media Bina Ilmiah, 8(1), 24-
- Project Management Institute. (2017). A guide to the project management body of knowledge (PMBOK guide) (6th Edition).
- Tam, V. W. Y., & Shen, L. Y. (2012). Risk management for contractors in marine projects. Organization, Technology & Management in Construction: An International Journal, 4(1), 403–410.
- I Wayan Sukaarta, Bonny F. Sompie, & Huibert Tarore. (2012). Analisis Resiko Proyek Pembangunan Dermaga Study Kasus Dermaga Pehe Di Kecamatan Siau Barat Kabupaten Kepulauan Sitaro. Jurnal Ilmiah MEDIA ENGINEERING, 2(4).