Sistem Grading Kualitas Telur Ayam Konsumsi berdasarkan Citra Kerabang Menggunakan Convolutional Neural Network
DOI:
https://doi.org/10.28926/briliant.v9i3.2014Keywords:
CNN, Classification, Grading, EggAbstract
Chicken egg grading is identifying and grouping or classifying chicken eggs for consumption based on specific criteria. In SNI 3926:2008, the grade/class of consumption eggs is divided into 3 (three): Grades I, II, and III. Eggs with grade I have a higher selling value than grade II. Likewise, grade II eggs have a higher selling value than grade III. With these criteria, it is necessary to carry out a grading process that is still carried out by manual observation, so it requires extra time and energy with less uniform results because it depends on the individual observing. Based on these problems, it is necessary to have an egg quality grading system based on shell images that can identify egg quality according to its grade. In the study, there are several stages of research, namely: 1) Literature Study, 2) Data Collection, 3) System Design, 4) System Testing, 5) Results Analysis, and 6) Publication and Reporting. The CNN algorithm is used to classify based on shell images. The study's results showed that the performance of the CNN model had an accuracy value of 92.19%, precision of 92.78%, recall of 92.62%, and f1-score of 92.42%. This shows that the CNN model can well classify the quality of chicken eggs for consumption based on shell images.
References
Adi F. (2023). Klasifikasi Ukuran dan Kualitas Telur Ayam Menggunakan Algoritma Convolutional Neural Network. e-Proceeding of Engineering, 10(1), 473-480.
Amelia, I., Hermana, A. N., & Pramana, A. (2016). Verifikasi Tanda Tangan Dengan Edge Detection Dan Metode Learning Vector Quantization. MIND Journal, 1(1), 49–56. https://doi.org/10.26760/mindjournal.v1i1.49
Bagas Valentino, S. (2023). Klasifikasi Kualitas Daging Marmer Berdasarkan Citra Warna Daging Menggunakan Metode Convolutional Neural Network. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 125–129. https://doi.org/10.36040/jati.v7i1.6128
Bila, S., Fitrianto, A., & Sartono, B. (2021). Image Classification of Beef and Pork Using Convolutional Neural Network in Keras Framework. International Journal of Science, Engineering and Information Technology, 5(02), 245–248. https://doi.org/10.21107/ijseit.v5i02.9864
BPS Provinsi Jawa Timur. (2020). Indikator Pertanian Provinsi Jawa Timur 2020.
D, W. M. P., & Kusumaningtyas, A. P. (2022). Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network. Jurnal Media Informatika Budidarma, 6(4), 2022–2031. https://doi.org/10.30865/mib.v6i4.4201
Ekamila, T., Rahayu, F., Zuchriadi, A., & Octa Indarso, A. (2023). Penerapan Deep Learning Untuk Klasifikasi Kesegaran Daging Sapi Berbasis Mobile Apps. Edu Komputika Journal, 10(1), 10–16. https://doi.org/10.15294/edukomputika.v10i1.68478
Firdaus, M. R. (2021). Penerapan Algoritma Convolutional Neural Network dalam Klasifikasi Telur Ayam Fertil dan Infertil Berdasarkan Hasil Candling. Jurnal Informatika Universitas Pamulang, 5(4), 563. https://doi.org/10.32493/informatika.v5i4.8556
Idrus, T. (2022). Identifikasi Penyakit Pada Tanaman Apel Menggunakan Convolutional Neural Network Berbasis Citra Daun. Universitas Islam Negeri Maulana Malik Ibrahim.
Lestariningsih, L., Nada, M. S., Yasin, M. Y., Ropida, S., & Abidin, M. K. (2020). Peranan Nomor Kontrol Veteriner Terhadap Jaminan Mutu Keamanan Produk Hasil Peternakan. Briliant: Jurnal Riset Dan Konseptual, 5(1), 180–188. https://doi.org/10.28926/briliant.v5i1.437
Lestariningsih, L., Putra, F. N., & Mashudi, M. (2023). Optimalisasi Tingkat pengetahuan peternak Puyuh terhadap Penyuluhan Mesin Tetas Puyuh dan smart Recording Berbasis IoT. JPPNU (Jurnal Pengabdian Dan Pemberdayaan Nusantara), 5(2), 173–180.
Lorentius, C. A., Adipranata, R., & Tjondrowiguno, A. (2019). Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network. Jurnal INFRA, 7(1), 221–227.
Mubarok, H. (2019). Identifikasi Ekspresi Wajah Berbasis Citra Menggunakan Algoritma Convolutional Neural Network (CNN). Universitas Islam Negeri Maulana Malik Ibrahim.
Pratama Adi, M. F., Prasasti, A. L., & Paryasto, M. W. (2023). Klasifikasi Ukuran dan Kualitas Telur Ayam Menggunakan Algoritma Convolutional Neural Network Classification of Chicken Egg Quality and Size Using the Convolutional Neural Network Algorithm. 10(1), 1–8.
Putra, F. N., Lestariningsih, L., & Tricahyo, V. A. (2023). Optimalisasi Peningkatan Tingkat Pengetahuan Peternak Itik dengan Mengembangkan Smart grading Berbasis IoT dan Edukasi Budidaya Itik. JPPNu (Jurnal Pengabdian Dan Pemberdayaan Nusantara), 5(2), 275–284.
Rusmanah, E., Wibowo Irawan, A., & Andria, F. (2019). Implementasi Digital Marketing Guna Peningkatan Peluang Pasar Produksi Hasil Ternak Puyuh Masyarakat Desa Galuga. Jurnal ABM Mengabdi, 6(1), 15–25. www.slideshare.net/wearesocialsg/digital-in-2018-southeast-asia
Sulistia, F. Y., & Vatresia, A. (2024). PENERAPAN DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) UNTUK KLASIFIKASI DAGING AYAM MENGGUNAKAN ARSITEKTUR RESNET-50. Journal of Information Technology and Computer Science (INTECOMS), 7(3), 685–691.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Briliant: Jurnal Riset dan Konseptual
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.