Estimasi State-of-Charge Pada Baterai Lithium-Ion Menggunakan Deep Neural Network
DOI:
https://doi.org/10.28926/briliant.v9i3.1874Keywords:
State-of-Charge, Deep Neural Network, bateraiAbstract
As electric vehicles (EV) become increasingly popular in the automotive world, an accurate State-of-Charge (SoC) estimation is critical to optimizing energy utilization, increasing driving range and ensuring long-lasting battery system. This research focuses on the application of Deep Neural Networks (DNN) as an SoC estimation method in EV, exploiting the inherent capacity of DNN to learn complex relationships in vast data sets. The results of the performed simulations show that the proposed DNN-based SoC estimation method achieves a high level of accuracy, outperforming traditional estimation techniques, especially in scenarios involving rapid changes in driving conditions. This research also explores the impact of Neural Networks architecture and hyperparameter tuning on overall performance and provides insights for optimizing DNN-based SoC estimation systems. From the tests that have been carried out, an error value of 1.3% is obtained from the results of the training carried out on the DNN structure that has been prepared.
References
International Energy Agency, I. (t.t.). World Energy Outlook 2018. www.iea.org/weo
Adebayo, T. S., Ullah, S., Kartal, M. T., Ali, K., Pata, U. K., & Ağa, M. (2023). Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Science of The Total Environment, 859, 160181. https://doi.org/10.1016/j.scitotenv.2022.160181
Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S., & Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Dalam Renewable and Sustainable Energy Reviews (Vol. 183). Elsevier Ltd. https://doi.org/10.1016/j.rser.2023.113518
Chemali, E., Kollmeyer, P. J., Preindl, M., & Emadi, A. (2018). State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. Journal of Power Sources, 400, 242–255. https://doi.org/10.1016/j.jpowsour.2018.06.104
Hemeida, A. M., Hassan, S. A., Mohamed, A. A. A., Alkhalaf, S., Mahmoud, M. M., Senjyu, T., & El-Din, A. B. (2020). Nature-inspired algorithms for feed-forward neural network classifiers: A survey of one decade of research. Dalam Ain Shams Engineering Journal (Vol. 11, Nomor 3, hlm. 659–675). Ain Shams University. https://doi.org/10.1016/j.asej.2020.01.007
Hoeft, F. (2021). Internal combustion engine to electric vehicle retrofitting: Potential customer’s needs, public perception and business model implications. Transportation Research Interdisciplinary Perspectives, 9. https://doi.org/10.1016/j.trip.2021.100330
Hossain Lipu, M. S., Hannan, M. A., Hussain, A., Ayob, A., Saad, M. H. M., Karim, T. F., & How, D. N. T. (2020). Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. Dalam Journal of Cleaner Production (Vol. 277). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124110
Hossain Lipu, M. S., Hannan, M. A., Hussain, A., Saad, M. H., Ayob, A., & Uddin, M. N. (2019). Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Transactions on Industry Applications, 55(4), 4225–4234. https://doi.org/10.1109/TIA.2019.2902532
Jiang, J., Chen, M., & Fan, J. A. (2021). Deep neural networks for the evaluation and design of photonic devices. Dalam Nature Reviews Materials (Vol. 6, Nomor 8, hlm. 679–700). Nature Research. https://doi.org/10.1038/s41578-020-00260-1
Lebrouhi, B. E., Khattari, Y., Lamrani, B., Maaroufi, M., Zeraouli, Y., & Kousksou, T. (2021). Key challenges for a large-scale development of battery electric vehicles: A comprehensive review. Journal of Energy Storage, 44, 103273. https://doi.org/10.1016/j.est.2021.103273
Ningrum, P., & Windarko, N. A. (2021). Estimation of State of Chrage (SoC) Using Modified Coulomb Counting Method with Open Circuit Compensation for Battery Management System (BMS). Dalam Journal on Advanced Research in Electrical Engineering (Vol. 5, Nomor 1).
Shu, X., Yang, W., Guo, Y., Wei, K., Qin, B., & Zhu, G. (2020). A reliability study of electric vehicle battery from the perspective of power supply system. Journal of Power Sources, 451. https://doi.org/10.1016/j.jpowsour.2020.227805
Vidal, C., Kollmeyer, P., Naguib, M., Malysz, P., Gross, O., & Emadi, A. (2020). Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network. SAE Technical Papers, 2020-April(April). https://doi.org/10.4271/2020-01-1181
Xia, X., Li, P., Xia, Z., Wu, R., & Cheng, Y. (2022). Life cycle carbon footprint of electric vehicles in different countries: A review. Separation and Purification Technology, 301, 122063. https://doi.org/10.1016/j.seppur.2022.122063
Yang, F., Li, W., Li, C., & Miao, Q. (2019). State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy, 175, 66–75. https://doi.org/10.1016/j.energy.2019.03.059
Yuen, B., Hoang, M. T., Dong, X., & Lu, T. (2021). Universal activation function for machine learning. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96723-8
Zhang, M., & Fan, X. (2020). Review on the state of charge estimation methods for electric vehicle battery. Dalam World Electric Vehicle Journal (Vol. 11, Nomor 1). MDPI AG. https://doi.org/10.3390/WEVJ11010023
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Briliant: Jurnal Riset dan Konseptual
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.