Analisis Pengaruh Daya Laser Marking Terhadap Laju Korosi AISI 304 Stainless Steel

Authors

  • Hendi Lilih Wijayanto Politeknik Industri Logam Morowali
  • Muh. Azis albar J Politeknik Industri Logam Morowali
  • Yusdianto Yusdianto Politeknik Industri Logam Morowali
  • Angga Tegar Setiawan Politeknik Industri Logam Morowali
  • Aditya Perdana Putra Politeknik Industri Logam Morowali

DOI:

https://doi.org/10.28926/briliant.v9i3.1484

Keywords:

Fiber laser marking, AISI 304 stainless steel, marking quality, corrosion rate

Abstract

The purpose of this study is to determine the effect of power on marking quality, namely groove geometry and marking visibility and corrosion rate on AISI 304 stainless steel fiber laser marking material in corrosive seawater media. This is important because based on the results of the analysis report from the information department, the results of fork and spoon products experience corrosion, especially in the area of laser marking results. In this study, the surface of AISI 304 stainless steel material is given laser marking treatment with power variations, namely 20 and 60 W. The results of SEM testing will be carried out to obtain data on the results of groove geometry and visibility of the marking results. Furthermore, the AISI 304 stainless steel material from the marking is immersed in corrosive sea water media for a span of 60, 90 and 120 days to measure the corrosion rate that occurs. As a result, the AISI 304 stainless steel marking material is also subjected to SEM observation to determine the type of corrosion and surface morphology of the laser marking results due to the influence of corrosion that occurs. It is expected that the results of this study will be able to provide recommendations for work process parameters in laser marking that can be applied to spoon and fork products as optimal parameters for improving the quality of better marking results.

Author Biography

Hendi Lilih Wijayanto, Politeknik Industri Logam Morowali

Teknik Perawatan Mesin

References

Chen, J., Xie, X., Zou, T., Zhang, Y., Wang, H., & Liang, Z. (2023). Improvement of the high-temperature oxidation resistance of 254SMo using ultrasonic strengthening grinding. Journal of Materials Research and Technology, 27, 2052–2065. https://doi.org/10.1016/J.JMRT.2023.10.068

Cholkar, A., McCann, R., Perumal, G., Chatterjee, S., Swayne, M., Kinahan, D., & Brabazon, D. (2023). Advances in laser-based surface texturing for developing antifouling surfaces: A comprehensive review. Applied Surface Science Advances, 18, 100513. https://doi.org/10.1016/J.APSADV.2023.100513

de Oliveira, D. A., Brito, P. P., Magalhães, F. de C., Cangussu, V. M., Azzi, P. C., Ardisson, J. D., Rocha, A. da S., & Abrão, A. M. (2024). Influence of deep rolling on the α’-martensite formation in the subsurface, geometrically necessary dislocations and corrosion resistance of austenitic stainless steel AISI 304. Surface and Coatings Technology, 487, 131011. https://doi.org/10.1016/J.SURFCOAT.2024.131011

Gupta, P., Sharma, A. K., & Singh, I. (2024). Plasma formation and material removal characteristics in microwave-metal discharge-based machining of AISI 304 stainless steel. Journal of Manufacturing Processes, 124, 1159–1179. https://doi.org/10.1016/J.JMAPRO.2024.06.069

He, S., Gao, S., Li, J., He, S., Yu, Y., Wu, J., Wang, X., Wang, G., Chen, X., & Zhou, F. (2024). Research on an in-situ synchronous CO elimination method in blasting operations and engineering experimental application based on nano-CO catalysts. Journal of Environmental Chemical Engineering, 12(4), 113260. https://doi.org/10.1016/J.JECE.2024.113260

Huang, K., Wang, K., Lee, P. K. C., & Yeung, A. C. L. (2023). The impact of industry 4.0 on supply chain capability and supply chain resilience: A dynamic resource-based view. International Journal of Production Economics, 262, 108913. https://doi.org/10.1016/J.IJPE.2023.108913

Jia, M., Wang, Y., Yue, J., Cao, C., Li, K., Yu, Y., Li, Y., & Lu, Z. (2024). Recent progress in laser shock peening: Mechanism, laser systems and development prospects. Surfaces and Interfaces, 44, 103757. https://doi.org/10.1016/J.SURFIN.2023.103757

Kasha, A., Srinivasan, K. V., Obadimu, S. O., & Kourousis, K. I. (2023). Immersion corrosion of material extrusion steel 316 L: Influence of immersion time and surface roughness. Materials Today Communications, 35, 106394. https://doi.org/10.1016/J.MTCOMM.2023.106394

Kim, B. heon, Kim, K. hwan, Kang, Y. jin, Kim, S. shin, & Kim, H. je. (2024). Hastelloy C276/AISI SS304 dissimilar metal welding: A comparative review of the effective application of laser and Micro-GTAW. Journal of Materials Research and Technology, 32, 621–633. https://doi.org/10.1016/J.JMRT.2024.07.185

Korakana, A., Korakana, S., Ulmek, N., & Pagare, A. K. (2020a). Analyzing the effect of the parameters of laser etching process influencing the corrosion resistance and surface roughness of marine grade 316 stainless steel. Materials Today: Proceedings, 32(xxxx), 452–462. https://doi.org/10.1016/j.matpr.2020.02.130

Korakana, A., Korakana, S., Ulmek, N., & Pagare, A. K. (2020b). Analyzing the effect of the parameters of laser etching process influencing the corrosion resistance and surface roughness of marine grade 316 stainless steel. Materials Today: Proceedings, 32, 452–462. https://doi.org/10.1016/J.MATPR.2020.02.130

Kosec, T., Legat, A., Kovač, J., & Klobčar, D. (2019). Influence of laser colour marking on the corrosion properties of low alloyed Ti. Coatings, 9(6). https://doi.org/10.3390/COATINGS9060375

Kostyuk, G. K., Shkuratova, V. A., Sennov, A. A., Petrov, A. A., & Nesterov, N. A. (2025). Microstructuring of fused silica by laser-induced microplasma using a pyrographite target for phase optical elements fabrication. Optics & Laser Technology, 181, 111657. https://doi.org/10.1016/J.OPTLASTEC.2024.111657

Leone, C., Genna, S., Caprino, G., & De Iorio, I. (2010). AISI 304 stainless steel marking by a Q-switched diode pumped Nd:YAG laser. Journal of Materials Processing Technology, 210(10), 1297–1303. https://doi.org/10.1016/j.jmatprotec.2010.03.018

Merino, R. I., Laguna-Bercero, M. A., Lahoz, R., Larrea, Á., Oliete, P. B., Orera, A., Peña, J. I., Sanjuán, M. L., & Sola, D. (2022). Laser processing of ceramic materials for electrochemical and high temperature energy applications. Boletín de La Sociedad Española de Cerámica y Vidrio, 61, S19–S39. https://doi.org/10.1016/J.BSECV.2021.09.007

Pandey, M., & Doloi, B. (2022). Parametric analysis on fiber laser marking characteristics for generation of square shaped marked surface on stainless steel 304. Materials Today: Proceedings, 56, 1908–1913. https://doi.org/10.1016/J.MATPR.2021.11.169

Pieretti, E. F., Pessine, E. J., Correa, O. V., de Rossi, W., & das Neves, M. D. M. (2015). Effect of laser parameters on the corrosion resistance of the ASTM F139 stainless steel. International Journal of Electrochemical Science, 10(2), 1221–1232.

Qi, J., Wang, K. L., & Zhu, Y. M. (2003). A study on the laser marking process of stainless steel. Journal of Materials Processing Technology, 139(1–3), 273–276. https://doi.org/10.1016/S0924-0136(03)00234-6

Schiavon, N., Melfos, V., Salzer, R., Lunkwitz, R., Chrysafis, K., Spathis, P., Merachtsaki, D., Triantafyllidis, K., Giannakoudakis, P., Xidas, P., Gigante, G. E., Ridolfi, S., Lahoz, R., Angurel, L. A., Brauch, U., Estepa, L. C., & de la Fuente Leis, G. F. (2012). Applying the Techniques on Materials II. 247–332. https://doi.org/10.1007/978-3-642-30985-4_6

Singh, D., Kumar, V., Nandal, V., & Hosmani, S. S. (2024). Investigating Microstructure Dynamics and Strain Rate Sensitivity in Gradient Nanostructured AISI 304 L Stainless Steel: TEM and Nanoindentation Insights. Materials Today Communications, 110386. https://doi.org/10.1016/J.MTCOMM.2024.110386

Švantner, M., Kučera, M., Smazalová, E., Houdková, Š., & Čerstvý, R. (2016). Thermal effects of laser marking on microstructure and corrosion properties of stainless steel. Applied Optics, 55(34), D35. https://doi.org/10.1364/ao.55.000d35

Toleti, K. S., Yarrakula, S., Modupalli, N., Thangaraju, S., Anandakumar, S., & Natarajan, V. (2024). Optimization of laser engraving labeling conditions using response surface methodology and its impact on quality characteristics of dragon fruit (Hylocereus undatus) peels. Food and Humanity, 3, 100342. https://doi.org/10.1016/J.FOOHUM.2024.100342

Xiang, Y. F., Mei, R. L., Azad, F., Zhao, L. Z., Su, S. C., Lu, G. G., & Wang, S. P. (2022). Investigation by nanosecond fiber laser for hybrid color marking and its potential application. Optics & Laser Technology, 147, 107553. https://doi.org/10.1016/J.OPTLASTEC.2021.107553

Xu, M., Ma, H., Zhong, X., Zhao, Q., Chen, S., & Zhong, R. (2023). Fast and accurate registration of large scene vehicle-borne laser point clouds based on road marking information. Optics & Laser Technology, 159, 108950. https://doi.org/10.1016/J.OPTLASTEC.2022.108950

Zhang, M. (2020). Corrosion Behaviour of Laser Marked Austenitic 304 Stainless Steel.

Zuchry, M., & Soemardji, L. (2018). Laju Korosi Stainless Steel Dalam Media Air Laut. Jurnal Mekanikal, 9(2), 1–6.

Published

2024-08-31

Issue

Section

Engineering and Technology